Munday, som nyligen anslöt till UC Davis från University of Maryland, utvecklar prototyper av dessa ”nattsolceller” som kan generera små mängder elektrisk ström. Forskarna hoppas kunna förbättra enhetens effekt och effektivitet.
Munday sa att processen liknar hur en normal solcell fungerar, men omvänt. Ett objekt som är varmt jämfört med omgivningen kommer att stråla ut värme som infrarött ljus. En konventionell solcell är kall jämfört med solen, så den absorberar ljus.
Rymden är verkligen kall, så om du har ett varmt föremål och riktar det mot himlen, kommer det att stråla ut värme mot rymden. Människor har använt detta fenomen för nattkylning i hundratals år. Under de senaste fem åren, sade Munday, har det varit mycket intresse för enheter som kan göra detta under dagen (genom att filtrera bort solljus eller rikta bort från solen).
Genererar kraft genom att stråla ut värme Forskarna beskriver sin uppfinning som i det närmaste en omvänd solpanel. Istället för att alstra elektricitet genom att fånga solstrålar, ska de alstra el genom att sända ut värmestrålning i rymden. Det finns redan liknande enheter, s k termoradiativ cell, som genererar ström genom att utstråla värme till omgivningen. Forskare har undersökt att använda dem för att fånga spillvärme från motorer.
”Vi tänkte, om vi tog en av dessa enheter och lägger den i ett varmt område och pekade det mot himlen,” sa Munday. Denna termoradiativa cell som riktas mot natthimlen skulle avge infrarött ljus eftersom det är varmare än yttre rymden.
”En vanlig solcell genererar el genom att absorbera solljus, vilket får en spänning att dyka upp över enheten och en ström att flöda. I dessa nya enheter släpps ljus istället ut och strömmen och spänningen går i motsatt riktning, men du genererar fortfarande ström, ”sa Munday. ”Du måste använda olika material, men fysiken är densamma.”
Enheten fungerar också under dagen om du vidtagit åtgärder för att antingen blockera direkt solljus eller rikta bort det från solen. Eftersom denna nya typ av solcell potentiellt skulle kunna fungera dygnet runt är det ett spännande alternativ för att balansera elnätet över dygnet mellan dag och natt.
Forskarna vid UC Davis ska nu konstruera små prototyper av sina anti-solceller för att testa hur väl de fungerar och hur hög effekt de kan få ut.
I Sverige slänger vi i genomsnitt knappt åtta kilo kläder i soporna varje år. En hel del av dem skulle kunna återanvändas men än så längre saknas bra metoder, framför allt för återvinning i större skala. Men det pågår flera projekt för att ta fram sådana metoder. Ett av dem är projektet WargoTex Development som startade 2018 i Vargön utanför Vänersborg och ska pågå i två år.
– Mycket textil återanvänds inte därför att det saknas bra funktioner för sortering, säger Maria Ström, verksamhetsledare på Wargön Innovation som driver projektet.
Utvecklingsprojektet, som fått stöd av Energimyndigheten, samlar 25 samarbetspartner under ett tak. Bland dem högskolor, kommunala energibolag, välgörenhetsorganisationer, återvinningsföretag och klädkedjor.
– Vi vill förstå hur man kan sortera textilierna mer effektivt. Vi har fått lokaler med en processhall där vi ska testa olika saker. Vi har fem demoprojekt, bland dem ett som tittar på robotteknik och ett som håller på med industriell redesign, säger Maria Ström.
Behövs industriell kapacitet
Projektet kom enligt henne till därför att flera olika aktörer inom återvinning hade nya idéer om vad man kan göra med uttjänt textil, men de hade insett att det i Sverige saknas industriell kapacitet för textilsortering.
– Vi såg en lucka just i sorteringsfunktionen. Om ett stort företag ser att de skulle kunna göra en produkt med återvunnen textil, då kanske de vill ha 10 000 ton på ett år, men den volymen finns inte framme i dag, säger hon.
I sorteringen gäller det att skilja ut de textilier som kan återanvändas – till exempel klädesplagg – från de uttjänta som ska återbrukas, det vill säga förvandlas till ny textilråvara eller annan råvara.
Råvaran måste sorteras
– Får man in en stor hög med textilier kan där finnas allt från urtvättade barntröjor till Armanikostymer. Det pågår många projekt inom det här området, det finns till exempel minst två svenska projekt som arbetar med att separera bomull och polyester. Men allt kräver att det finns en sorterad råvara, säger Maria Ström.
Det finns många aktörer som arbetar med återvinning och återbruk av textilier på olika sätt. Därför är det så många olika samarbetspartner med i projektet i Vargön – alla kan bidra med sina erfarenheter och kunskaper.
– Vi behöver också utveckla textilinsamlingen. Andra länder, som Tyskland, Frankrike och våra nordiska grannländer samlar in mer än vi. Alldeles för mycket textil slängs fortfarande, säger Maria Ström.
”En utmaning för oss som medborgare”
Hon framhåller att vi i Sverige har en hög konsumtion av kläder.
– Mycket blir bara liggande, ibland utan att man ens tagit bort prislappen. Det här är en utmaning för oss som medborgare – att handla mer second hand, vara rädda om våra kläder, lämna ifrån oss det vi inte använder.
Design- och konstruktionsuppgift: (Kurser: Design 1, Konstruktion 1, Teknik 1, Uppfinnarresan)
Uppfinn en fungerande klädsorteringsmaskin.
Vad behöver maskinen kunna göra? Förklara och beskriv sorteringsprocessen steg för steg.
Skapa en funktionsbeskrivning som förklarar hur sorteringsanläggningen eller din maskin fungerar och vilka delar den består av.
Designa, skissa, rita och konstruera en modell eller prototyp.
Problemlösning kommer vi i kontakt med i många olika situationer och sammanhang, både i skolan, arbetslivet och i privatlivet. För att kunna lösa problem behöver man givetvis en hel del kunskaper kopplade till det specifika ämnesområdet. Men det finns även en del generella saker, strategier och metoder man kan använda sig av för att bli en bättre problemlösare.
Problemlösning kan delas in i följande områden: Problemlösningens faser, tänkbara strategier vid problemlösning och de kompetenser som är nödvändiga hos en problemlösare.
Elevernas arbete med ett problem kan delas upp i fyra successiva faser:
att förstå problemet
att göra upp en plan
att genomföra planen
att se tillbaka och kontrollera resultatet
En av de viktigaste faserna för lärande är den sista, att efter man tror sig kommit fram till en lösning se tillbaka, kontrollera resultatet och reflektera.
Några frågor man kan ställa sig är:
Stämmer lösningen verkligen med de förutsättningar som ges i problemet?
Finns det något annat, kanske enklare sätt att lösa problemet på?
Kan jag kontrollera mitt resultat genom att lösa problemet på ett annat sätt?
Har jag upptäckt några nya spännande samband som jag kan ha nytta av i andra sammanhang?
Strategier för en bra problemlösningsplan:
välja en eller flera laborationer att arbeta med
rita bilder
söka mönster
arbeta baklänges
göra en lista
skriva upp en ekvation
dramatisera situationen
göra en tabell eller ett diagram
gissa och pröva
lösa ett enklare problem först
använda laborativa material
Bygga och använda modeller
Bygga och använda prototyper
Använda simuleringsverktyg
Kolla hur du själv eller andra löst liknande problem tidigare
Uppdatering 2020-02-04: Enormt gensvar på Södras nyhet om lösning för återvinning av textilier! När Södra i slutet av oktober presenterade sin världsunika lösning för textil återvinning – OnceMore™ lät inte reaktionerna vänta på sig. Det blev ett omedelbart genomslag och timmarna efter nyheten släppts strömmande förfrågningar in från hela världen. – Vi trodde att det skulle vara en stor nyhet men blev nog ändå lite chockade över gensvaret. Det visar vilket enormt intresse det är i återvinningsfrågan, säger Helena Claesson, projektledare Södra. https://www.bioinnovation.se/nyheter/genombrott-for-sodra-med-textilatervinning-i-industriell-skala/ Skogindustrikoncernen Södra, som även är Sveriges största skogsägarförening, har tagit fram en ny metod för att återvinna fibrer från blandmaterial för att tillverka nya textilier.
Flera miljoner ton textilier slängs varje år. Mycket på grund av det inte har funnits någon effektiv teknik för återvinning av textilier i stor skala. En utmaning kring att lyckas med en sådan process ligger i alla materialblandningar som först behöver kunna separeras från varandra.
Men nu meddelar Södra att de har nått ett genombrott i att återvinna textilier som är gjorda av blandmaterial. Med hjälp av ny teknik kan bolaget i industriell skala separera polyester från bomull, viskos eller lyocell. De uppdelade fibrerna kan sedan användas för att tillverkning av nya kläder.
– Det speciella är att vi kan ta hand om blandmaterial och inte har några begränsningar i polyesterhalten. Vi jobbar redan i industriell skala och behöver inte bygga någon ny fabrik utan kan justera befintliga anläggningar, säger Helena Claesson i en kommentar till DI, som har lett projektet på Södra.
Produktionen kommer att starta på en låg nivå om 30 ton under innevarande år. Men målsättningen på sikt är att komma upp i 25 000 ton textilier för inblandning i massatillverkningen. Enligt Södra själva är detta ett världsunikt genombrott, vilket kan göra det möjligt att mer textilier återvinns i stället för att gå till förbränning i framtiden.
Bakgrund: I slutet av 2017 presenterades en världsunik återvinningsprocess för textilier – Blend Re:wind. För första gången finns nu en metod som lyckas ta till vara på både bomullen och polyestern från tyg med polyester/bomullsfiberblandning. Processen har tagits fram inom forskningsprogrammet Mistra Future Fashion av forskare vid Chalmers och RISE tillsammans med skogsindustriföretaget Södra.
Denna revolutionerande process är resultatet av sex års forskning och är avgörande för storskalig kommersialisering och framtida produktion av återvunnet tyg.
Att återvinna textil till textil i god kvalitet och känsla är en komplex uppgift. Kläder består av olika material och fiberblandningar, och för att kunna återvinna dem krävs utveckling av nya teknologier och innovationer. Idag uppskattas den globala återvinningen av textil tillbaka till textil vara nästintill obefintlig. Majoriteten av uttjänta kläder förbränns eller läggs på deponi. Textilavfall är därför en outnyttjad resurs för modeindustrin som är i stort behov av mer hållbara materialalternativ.
Blend Re:wind-processen har tagits fram inom forskningsprogrammet Mistra Future Fashion av forskare vid Chalmers och RISE tillsammans med skogsindustriföretaget Södra. Bomull- och polyesterfibrer separeras i en kemisk process och frigörs till tre rena produkter; bomull och polyesterns två byggstenar, en i fast och en i flytande form. Bomullen återvinns sen till nya viskosfilament av hög kvalitet och polyestern kan åter byggas upp till nya starka fibrer. Detta ger cirkulära produktströmmar och innebär att vi kommer närmare lösningen att sk ”close the loop” för textil.
Huvudfokus har varit på återvinning av bomull och att producera nya högkvalitativa viskosfilament från den återvunna bomullen. Bomull är en naturlig cellulosabaserad råvara, med hög miljöbelastning. Därför är det viktigt att så mycket som möjligt återanvända och återvinna denna unika fiber som naturen framställer. Projektet har letts av Dr Hanna de la Motte som förklarar:
– De olika fibrerna i tyget måste separeras innan de återvinns. Polyestern som är en syntetisk fiber är generellt enklare att hantera än de komplexa naturliga bomullsfibrerna, men tack vare nationell spetskunskap inom cellulosakemi har vi hittat en lösning som även tar till vara på bomullen. Därför är vår separationsprocess, med cirkulära lösningar för båda materialen, ett viktigt bidrag till de framtida globala systemen för textilåtervinning. Det behövs för att kunna möjliggöra cirkularitet för mode och textilier.
Ett gediget doktorandarbete av Dr Anna Palme ligger till grund för utvecklingen. Att förstå hur bomull påverkas av slitage har varit A och O i projektet och därför har hon gjort omfattande studier av slitna lakan från sjukhus innehållande bomull och polyester. Från den bomull som utvunnits ur de slitna lakanen har därefter fina viskosfilament kunnat framställas.
En stor fördel med Blend Re:wind-processen är att separationen tar hänsyn till befintliga industrier. Målet har hela tiden varit att integrera med befintlig skogs- och kemiindustri eller andra återvinningsinitiativ. Anna Palme förtydligar:
– Viskosen har samma kvalitet som filament gjorda av kommersiell dissolvingmassa från skogsindustrin och som används i viskosproduktion. Det innebär att materialet förhoppningsvis enkelt kan integreras i dessa processer. Den separerade polyestern kan polymeriseras till hög kvalitet och är lämpliga för integration i befintlig industri. Här finns redan etablerade samarbeten med industriaktörer och experiment utförs.
– Separationen använder kemikalier som redan idag nyttjas i både skogs- och viskosindustrin, vilket därför underlättar möjliga integreringar, detta för att minimera både miljömässiga och ekonomiska kostnader. Att gå från labb till uppskalning är dyrt och är därmed vår största utmaning just nu. Med möjlighet att integrera processen i befintlig industri hoppas vi kunna hantera denna utmaning bra.
Ett annat viktigt krav har varit att Blend Re:wind ska ha en bra miljöprestanda. Forskningsprogrammet Mistra Future Fashion handlar framförallt om att finna lösningar som ger en hållbar modeindustri. Separationsprocessen uppfyller dessa krav främst genom att vara vattenbaserad och består av vanliga, billiga bulkkemikalier och en katalysator.
Framtiden för textilåtervinning ser mer ljus ut än någonsin. Det genomförs forskning och global utveckling som aldrig förr. Hanna de la Motte berättar:
– Det tog sex år att komma till denna punkt då vi ser lovande resultat i vår process för framtida textilåtervinning. Men vi är inte ensamma, det finns många briljanta återvinningsinnovationer och framtiden behöver mer forskning inom området. Gällande Blend Re:wind är vår bedömning är att den har stor potential på den globala marknaden i framtiden.
Kontakta för mer information:
Dr Hanna de la Motte, temaledare Mistra Future Fashion och forskare vid RISE Research Institutes of Sweden, hanna.delamotte@ri.se
Mistra Future Fashion är ett forskningsprogram om hållbart mode, och undersöker hur dagens modeindustri och konsumtion kan bli hållbar. Vägledda av principerna för cirkulär ekonomi, arbetar programmet tvärvetenskapligt och involverar 50+ partners från hela ekosystemet för mode. Med ett unikt systemperspektiv kombineras nya metoder för design, produktion, användning och återvinning med relevanta aspekter som nya affärsmodeller, politik, konsumentbeteende, livscykelanalys, systemanalys, kemi, teknik mm. Forskningsstiftelsen MISTRA är initiativtagare och primär finansiär för åren 2011-2019. Läs mer på www.mistrafuturefashion.com
FAKTA om Blend Re:wind processens innehåll:
Högkvalitativa återvunna filament: Huvudfokus har varit på återvinning av bomull och att producera nya högkvalitativa viskosfilament från den återvunna bomullsströmmen, vilket är avgörande för vidare industriell bearbetning mot återvunnet tyg.
Framgångsrik fullständig återvinning av polycottonblandningar med rena produktflöden och med högt materialutbyte: Viskosfilament har framgångsrikt
erhållits från den bomull som utvunnits från slitna polycottonlakan. Filamenten har samma kvalitet som filament gjorda av kommersiell dissolvingmassa som används i kommersiell viskosproduktion. Den separerade resten från polyester, polyestermonomerer, kan polymeriseras till polyester av hög kvalitet. Dessa monomerer är lämpliga för integration med befintliga kemikalieprocesser – här är samarbete med industriaktörer redan etablerat och experiment utförs.
God genomförbarhet med befintliga industriprocesser: En stark fördel med Blend Re:wind processen är att separationen tar hänsyn till befintliga industrier, och målet är integration med befintlig skogs- och kemisk industri eller återvinningsinitiativ. Separationen använder kemikalier som redan används i den svenska skogsindustrin och i viskosindustrin för att underlätta möjliga integreringar.
Stark miljöprestanda: Det är en lämplig separationsprocess eftersom den är vattenbaserad och använder endast vanliga, billiga bulkkemikalier och en katalysator.
Om forskningen och Blend Re:wind processen:
Blend Re:wind initierades 2011 och har utvecklats inom det svenska Mistra Future Fashion av parterna Chalmers Tekniska Högskola, RISE Research Institutes of Sweden och Södra.
Arbetet har letts av Dr Hanna de la Motte, temaledare för tema 4, Återvinning, inom Mistra Future Fashion och forskare vid RISE. Hennes kompetens ligger inom cellulosakemi och kemisk återvinning av textil där hon är en internationellt erkänd expert. Andra nyckelpersoner involverade är Dr Anna Palme, forskare och ansvarig för den tekniska utvecklingen på Chalmers och Dr Harald Brelid vetenskaplig rådgivare från Södra.
Projektets budget är 6 miljoner kr och har finansierats inom Mistra Future Fashion med medel från forskningsstiftelsen MISTRA, kompetensplattformen Cirkulär Ekonomi på RISE, samt in-kind bidrag från involverade partners.
Projektet har bidragit med ny grundläggande kunskap inom kemisk textilåtervinning och med flertalet vetenskapliga publikationer:
Avhandlingar
Recycling of cotton textiles: Characterization, pretreatment, and purification
Resultaten har också belönats med flertalet utnämningar:
Renova miljöstipendium 2017
Delas ut årligen och syftar till att stimulera forskning inom miljö- och återvinningsområdet.
Till Anna Palme – Annas forskning handlar om att återvinna textilier av blandmaterialet polyester/bomull, ett material som bland annat används i lakan för sjukhus. Blandtextilier av polyester och bomull ska inte slängas utan återvinnas till nya textilier! Det är målet för Anna Palmes forskning.
Det händer mycket i Oceanhamnen i Helsingborg nu. Oceanhamnen är första etappen av stadsutvecklings-projektet H+ i Helsingborg som fram till år 2035 ska omvandla en miljon kvadratmeter gammalt hamn- och industriområde till de fyra stadsdelarna Oceanhamnen, Universitetsområdet, Husarområdet och Gåsebäck och ge plats för 10 000 nya invånare. Syftet är att skapa framtidens smarta hållbara stad och då behöver vi självklart involvera eleverna på Innovationsgymnasiet i Helsingborg!
Alla viktiga projekt behöver en flygande start! Först ut på bollen är teknikeleverna i årskurs 2 (TE18DP) som läser Design, Konstruktion, CAD och produktutveckling som, förutom att skapa 3D-ritningar med inredningsförslag till blivande bostadsrätter, kontor och hotell, även kommer bygga fysiska 3D-modeller av de nya bostäderna. Teknikeleverna i årskurs 1 (TE19) är också med i projektet och kommer jobba med fasadritningar och bygga skalenliga modeller av fastigheternas fasader inom kursen Teknik 1. TE18DP ska även designa och konstruera förslag på smarta, kompakta och mobila modulära studentbostäder av återbruksmaterial. Som en naturlig del i projektet väver vi in innovativa tekniska lösningar för smarta hem, intelligenta byggnader med lokal energiåtervinning och system för användarcentrerad feedback i syfte att minska varje individs energi- och vattenförbrukning och avfallsmängd. För de projekt och produktidéer som rör IoT (Internet Of Things) och digitala lösningar kommer våra elever (TE18IM) som läser Dator- och Nätverksteknik, Programmering, Webbutveckling och certifieringskursen Cisco IoT Fundamentals Connecting Things involveras. Genomgående för uppdragen är tillämpning av principer för hållbar design och användandet av moderna professionella digitala design- och konstruktionsverktyg som Blender, Sketchup, Fusion 360, Meshroom, Autodesk Revit, Unity, Unity Reflect samt 3D-skrivare och återbruksmaterial för att skapa skalenliga fysiska modeller. Under våren kommer natureleverna (NA19), som en del av projektet ”TIS-Tema Vatten”, titta närmare på den nya innovativa vattenreningsanläggningen Reco Lab (se mer info nedan) som är en modell för framtidens avloppssystem som håller på att byggas i Oceanhamnen.
Oceanhamnsområdet är just nu en inhägnad byggarbetsplats där förvandlingen till en levande stadsdel med de första 450 bostäder pågår för fullt så att de första invånarna kan flytta in redan nästa år. Här byggs också restauranger, handelsyta och Oceanhamnen Waterfront Business District, ett nytt affärsdistrikt med 32 000 kvadratmeter nya kontor. Området får endast besökas av behörig personal med ID06 passerkort, så vi har inte möjlighet att gå dit och göra fältstudier på nära håll med eleverna. Så för att få en inblick i hur arbetsprocesserna och bygget fortskrider får vi ta till andra kreativa metoder. I första hand söker vi samarbeten med de aktörer som är inblandade i olika delar av Oceanhamnen-projektet.
För att få lite perspektiv på projektet, fågelperspektiv alltså, så lyfte jag blicken och flög runt ett par varv och kollade in hur området ser ut idag, den 22 januari 2020. Här nedan är ett litet filmklipp med en helikoptervy över området som vi kommer ha under luppen de närmaste månaderna.
För att få en känsla för hur det är tänkt att se ut när Oceanhamnen är färdigbyggd så är en 3D-visualisering med realistisk rendering ett bra och kraftfullt verktyg. Här nedan får du en förhandstitt i 3D på den nya stadsdelen som håller på att växa fram med ett spektakulärt läge vid havet, ett stenkast från Helsingborgs centralstation. För att skapa en sådan film kan man t ex använda programvaran Blender 2.81 som vi börjat använda i kurserna Design, Konstruktion och Cad.
Digitalisering möjliggör nya innovativa arbetssätt Om man vill gå ett steg längre och erbjuda en interaktiv upplevelse så att besökaren själv kan navigera runt i 3D-miljön så kan man istället lägga in de 3D-objekt man skapat i t ex Fusion 360 eller Sketchup, i spelutvecklingsmiljön Unity, som vi använt i undervisningen i Programmering. I Unity kan man även skapa en interaktiv VR- eller AR-upplevelse. Med Unity Reflect kan man sedan koppla samman konstruktionsritningarna och projektplaneringsverktygen och följa hela byggprocessens alla olika steg i VR från en annan plats, eller med hjälp av AR-teknik se hur byggnaden steg för steg kommer att byggas upp precis där du står, trots att det ännu inte är klart. Det är som att i realtid kunna se in i framtiden, in genom väggar eller tillbaka till hur någonting såg ut innan.
Här kan du se var byggherrarna bygger
Det är totalt sex byggherrar som ska bygga bostäder i den nya stadsdelen. Vi vill gärna samarbeta med dem på olika sätt inom ramen för de kurser eleverna läser, men även för SYV (Studie- och Yrkes-Vägledning). Det kan t ex handla om studiebesök, intervjuer, designuppdrag eller praktikplatser. Kartan härunder visar var de ska bygga, och länkarna går till mer information om dem och deras projekt.
Oceanpiren är en del av Oceanhamnen, ett nytt spännande bostadsområde mitt i Helsingborg. På bästa läge, längst ut på piren, bygger vi 69 bostadsrätter om 1-4 RoK – Brf Oceanpiren. Här bor du på första parkett vid havet, i hjärtat av stadsdelen, i ljusa, välplanerade bostadsrätter som är byggda för en hållbar livsstil. Samtidigt om vi uppför Brf Oceanpiren bygger vi fyra radhus i townhouse-stil. Vi kallar dem Oceanvillorna. De har både hållbarhetstänket och den magnifika havsutsikten gemensamt med Brf Oceanpiren.
Design-, konstruktions- och CAD-uppgifter till TE18DP Här är en lista på exempel på arbeten och uppdrag som eleverna ska jobba med. Mer utförliga och detaljerande instruktioner ges under lektionerna, men de olika uppgifterna publiceras också på sidorna Designuppgifter för TE18DP och Konstruktions- och CAD-uppgifter för TE18DP.
Skapa en CAD-ritning på en av lägenheterna i Brf Oceanpiren. Utgå från planritningen.
Skapa ett komplett inredningsförslag till lägenheten.
Skapa konstruktionsritningar av väggsektioner, tak och golv i minst två olika material.
Skapa en materiallista och kostnadskalkyl för de ingående konstruktionselementen.
Gör hållfasthetsberäkningar och riskanalyser
Jämför materialalternativen med hänsyn till kostnad, hållfasthet, hållbarhet, miljöpåverkan, klimatavtryck och möjlighet till återvinning (livscykelanalys).
World Trade Center Helsingborg i Oceanhamnen ska bli mötesplatsen för entreprenörer, scale-ups, etablerade företag och affärs- och helgresenärer.
WTC Helsingborg blir en kontors- och hotellfastighet som kommer bli ett landmärke i Helsingborg. Med sina fjorton våningar precis vid hamninloppet ger den dig närkontakt med sundet, båtarna och kontinenten. Här kommer finnas gemensam service som reception och konferensavdelning. Gym, relax, dusch- och omklädningsrum. Restaurangen med uteservering vid vattnet och takterasser är ytterligare fördelar som berikar både arbets- och privatliv. I källaren planeras för cykelgarage med möjligheter till reparationer och en laddstation för elcyklar.
Fastighet är ritad av Juul Frost Arkitekter, men byggherren Midroc välkomnar kunderna tidigt in i processen för att kunna påverka lokalens utformning så att den passar verksamheten bäst. Att vara med och arbeta med förslag på lokalernas utformning kan vara ett bra elevprojekt! Juul Frost Arkitekter är förövrigt experter på design av campusområden och studentbostäder, och hur man kan integrera dem i städer.
Oceanhamnen får ett innovativt nytt avloppssystem– Reco Lab med Tre Rör Ut
Oceanhamnen kommer få en helt ny typ av klimatsmart avloppssystem med värmeåtervinning och lokalt producerad biogas. Varje fastighet ansluts till tre separata rör, ett för matavfall, ett för gråvatten och ett för svartvatten. Detta innovativa avloppssystem kräver att ingenjörerna tänker utanför boxen. I filmklippet ovan berättar VA-ingenjören Peter Winblad på Nordvästra Skånes vatten och avlopp, NSVA, om utmaningarna.
Reco Lab – en testbädd och showroom för framtidens källsorterande avloppssystem
Reco Lab kommer att bidra till att utveckla det världsunika systemet Tre Rör Ut för insamling och hantering av mat- och toalettavfall i fastigheterna på Oceanpiren i stadsdelen Oceanhamnen i centrala Helsingborg.
På uppdrag av NSVA har entreprenörföretaget NCC upphandlat det nederländska företaget Landustrie och det svenska företaget EkoBalans Fenix AB för att installera processteg i det unika Reco labs utvecklingsanläggning. Reco lab, som är en del av Öresundsverket i Helsingborg, ska behandla det källsorterade avloppet från Helsingborgs nya stadsdel, Oceanhamnen. Avloppshantering har en naturlig roll att spela i den cirkulära ekonomin då mycket av våra essentiella resurser, som vatten, näringsämnen och organiskt material passerar igenom stadens avlopp.
Det källsorterande avloppet innebär en reningsprocess med kraftigt ökad resursåtervinning. Miljövinsterna är flera:
ökad biogasproduktion
ökad näringsåtervinning
effektiv värmeåtervinning
mer energieffektiv läkemedelsrening
minskad klimatpåverkan
möjligheten för vattenåtervinning
Reco Lab planeras att vara färdigbyggt och driftsatt våren 2021 och inkluderar även ett showroom för utbildning samt en testbädd för teknikutveckling. Studiebesök hos NSVA för natureleverna (NA19) är planerat till maj 2020. Eleverna i NA18 borde också studera Reco Lab som en del av biologi- och kemikurserna, i synnerhet de som valt inriktningen mot natur och samhälle.
Bilder på bygget av Oceanhamnen
Bilder från fältstudie vid Oceanhamnen och Pixlapiren 2020-01-22 med drönaren DJI Spark:
Drönarvy | Helsingborg Oceanhamnen 2019-02-24 (Helsingborg då & nu)
Här är en kort introduktion till Chimera, en fördjupningsteknologi som gör det möjligt för lokala och avlägsna studenter att känna att de deltar lika och interagerar i en klassmiljö. Denna teknik kommer att vara lika användbar i alla presentatörs-/deltagarsituationer med tillägg av alternativa VR-miljöer.
Skicka frågor eller förfrågningar för mer information till JimmyG@PagoniVR.com
Från bildigenkänning till artificiell bildgenerering. AI-forskningen och utvecklingen inom maskininlärning (machine learning), när det handlar om bilder och foton, har i huvudsak handlat om artificiell bildigenkänning. Dvs att skapa algoritmer för att lära datorer att känna igen visuella objekt i bilder och tolka det som syns och sker i foton. (engelska: Image recognition, object detection, object classification)
De senaste åren har även AI:s förmåga att skapa (generera) falska fotorealistiska bilder tagit stora kliv framåt. På webbplatsen, ThisPersonDoesNotExist.com, kan du se själv med egna ögon hur långt utvecklingen kommit.
Dessa personer finns inte på riktigt. Ansiktena har skapats av AI-algoritmen StyleGAN på webbplatsen ThisPersonDoesNotExist.com
Webbplatsen är skapad av Phillip Wang, en fd programvaruingenjör vid Uber, och skapar automatiskt nya bilder på människors ansikten som inte finns på riktigt. Algoritmen bakom den bygger på forskning som släpptes förra året av grafikchipdesignern Nvidia. AI:t är tränat på ett enormt stort dataset med foton på riktiga människoansikten, och använder sedan en typ av neuralt nätverk som kallas ett Generativt Adversarialt Nätverk (engelska Generative Adversarial Network, GAN) för att tillverka nya falska människoporträtt.
”Varje gång du läser in webbsidan skapar nätverket en ny ansiktsbild från början,” skrev Wang i ett Facebook-inlägg. ”De flesta förstår inte hur bra AI:er kommer att vara på att syntetisera bilder i framtiden.”
Den underliggande AI-algoritmen som drivs på webbplatsen uppfanns ursprungligen av en forskare som heter Ian Goodfellow. Nvidias AI-algoritm, kallat StyleGAN, gjordes nyligen till öppen källkod och har visat sig vara otroligt flexibel. Även om den här versionen av modellen är tränad för att generera mänskliga ansikten, kan den i teorin användas för att efterlikna någon annan källa. Forskare experimenterar redan med andra mål, som t e x anime tecken, teckensnitt och graffiti.
Stansning av hål i opaka solceller förvandlar dem till transparenta fönster. Bild från Ulsan National Institute of Science and Technology (UNIST)
Dina kontorfönster kan snart ersättas med solpaneler, eftersom forskare har hittat ett enkelt sätt att göra den gröna tekniken transparent. Tricket är att stansa små hål i dem som är så nära varandra att vi ser dem som tydliga.
Solpaneler kommer att vara avgörande för att öka upptaget av solenergi i städer, säger Kwanyong Seo vid Ulsan National Institute of Science and Technology, Sydkorea.
Det beror på att takutrymmet förblir relativt fast medan fönsterutrymmet växer när byggnader blir högre. ”Om vi applicerar transparenta solceller på fönster i byggnader kan de generera enorma mängder elkraft varje dag,” säger Seo.
Problemet med de senaste utvecklade transparenta solcellerna är att de ofta är mindre effektiva. De tenderar också att ge ljuset som passerar genom dem en röd eller blå nyans.
För att övervinna detta söker många forskare efter nya material att bygga transparenta solceller med. Seo och hans kollegor ville dock utveckla transparenta solceller från det mest använda materialet, kristallina kiselskivor, som finns i cirka 90 procent av solcellerna över hela världen.
De tog 1 centimeter kvadratceller gjorda av kristallint kisel, som är helt ogenomskinligt, och sedan stansade små hål i dem för att släppa igenom ljuset.
Hålen är 100 mikrometer i diameter, omkring storleken på ett mänskligt hår, och de släpper igenom 100 procent av ljuset utan att ändra färg.
Den fasta delen av cellen absorberar fortfarande allt ljus som träffar den, vilket resulterar i en hög effektomvandlingseffektivitet på 12 procent. Detta är väsentligt bättre än de 3 till 4 procent som andra transparenta celler har uppnått, men är fortfarande lägre än 20 procent effektiviteten som de bästa helt ogenomskinliga cellerna som för närvarande finns på marknaden.
Under de kommande åren hoppas Seo och hans kollegor att utveckla en solcell som har en effektivitet på minst 15 procent. För att kunna sälja dem på marknaden måste de också utveckla en elektrod som är transparent.
Här får du möjlighet att bestämma över Sveriges elproduktion. Utmaningen ligger i att ha tillräckligt med effekt när efterfrågan är som störst och att samtidigt hålla koll på miljökonsekvenserna. Du bygger – du bestämmer!
Simulatorn räknar med att tillfälliga överskott exporteras som vid behov importeras senare.
Varje megawatt (MW) elproduktionskapacitet kan bara användas av ett land åt gången. Riktigt kalla dagar skapar ofta brist också i våra grannländer så varje land behöver tillräckligt med kapacitet för att klara effekttoppar.
Räknar ni med energibesparingar?
Vi räknar med dagens elbehov. I framtiden kan behovet av el både öka och minska.
Effektivare användning av elenergi ger ökad ekonomisk konkurrenskraft vilket leder till ekonomisk tillväxt som i sin tur historiskt sett alltid gett högre efterfrågan på el.
Räknar ni med lagring av el?
Vi har inte räknat med lagring av el i nuvarande versionen av Simulatorn.
Ett energilager skapar energiförluster på motsvarande 25 procent vilket gör att mer energi behöver produceras än om ett energilager inte används.
Räknar ni med smarta elnät?
Nej, men införande av smarta elnät ändrar grundläggande inte på våra beräkningar.
Solenergi har ingen tillgänglig effekt?
Tillgänglig effekt i simulatorn beräknas vid tidpunkten då efterfrågan på el är som störst. I Sverige inträffar detta kalla dagar mellan klockan 7-8 på förmiddagen. Eftersom solen inte har gått upp vid denna tidpunkt på vintern kan solpaneler inte producera någon ström då.
Så har vi räknat
Här kommer en beskrivning av hur vi har räknat ut effekt, energi och energiöverskott.
Effekt
Effekten är ett mått på energiproduktionskapaciteten hos en elproduktionsanläggning. Effekten kan delas upp i tre delar.
Installerad effekt
Medeleffekt
Minsta tillgängliga effekt
Installerad effekt (Watt) är helt enkelt den högsta effekt som produktionsanläggningen kan producera. Medeleffekt beräknas genom att ta energiproduktionen (Wh) för en viss period (exempelvis ett år) och dela med antalet timmar för perioden (ett år är 365×24=8760 timmar).
Minsta tillgängliga effekt är den effekt som sannolikt finns tillgängligt vid tidpunkten för den högsta elförbrukningen. I Sverige inträffar den högsta elförbrukningen ungefär klockan 7 på morgonen under kalla vinterdagar.
För att beräkna tillgängligheten för olika kraftslag används Svenska Kraftnäts årliga balansrapport. Det högsta effektbehovet vid en normalvinter är 26 700 MW men vid en s.k. tioårsvinter kan effektbehovet uppgå till 27 700 MW. Tabellen nedan visar prognosen för installerad effekt vid årsskiftet 2019/20 (Svenska Kraftnät). Notera också att vi räknar bort den delen av gaskraften som ingår i störningsreserven (ca 1360 MW):
Kraftslag
Installerad effekt
Tillgänglig effekt
Tillgänglighetsgrad
Vattenkraft
16 318
13 400
82%
Kärnkraft
7 710
6 939
90%
Solkraft
745
0
0%
Vindkraft
9 648
868
11%
Gasturbiner
219
197
90%
Gasturbiner i störningsreserven
1 358
0
0%
Olje-/kolkondens
913
822
90%
Olje-/kolkondens otillgängligt för marknaden
520
0
0%
Mottryck/kraftvärme
4 622
3 536
77%
Mottryck/kraftvärme otillgängligt för marknaden
450
0
0%
Summa
40 503
25 762
–
Kolkraft och solenergi
I våra beräkningar gör vi bedömningen att kolkraft har motsvarande tillgänglighet som kärnkraft och gasturbiner nämligen 90%. För solenergi har vi valt att noll procent finns tillgängligt när effektbehovet vintertid är som störst. I Malmö går solen upp klockan 08:30 och går ner 15:37 vid midvintersolståndet den 21 december. Högst effektbehov uppstår vintertid före åtta och efter sexton då det alltså i hela Sverige fortfarande är mörkt.
Kolkraft, 90% tillgänglig effekt.
Solenergi, 0% tillgänglig effekt.
Svenska Kraftnät räknar med att det under vintern 2019/2020 finns 745 MW installerad solenergi i Sverige.
Beräkning av reglerkraft
När vi beräknar energi så startar vi först med hypotesen att alla anläggningar med låga produktionskostnader körs så mycket som möjligt. All produktion i icke-styrbara produktionsanläggningar som överstiger årsmedelproduktionen antas gå på export. Vind och sol i det nordiska elsystemet är ofta korrelerat så därför går det inte att importera just dessa kraftslag senare i obegränsad omfattning. Begränsningen till medeleffekten bedöms ändå vara generöst tilltaget.
Elbehov minus produktion utan reglerkraft minus export ger alltså behovet av reglerkraft.
Vattenkraften antas kunna användas fullt ut som reglerkraft även om det i genom vattendomar och andra fysiska begränsningar i praktiken inte är möjligt. När vattenkraften inte räcker till kan gasturbiner eller annan reglerkraft köras under begränsad tid. Reservanläggningar som vissa gasturbiner och oljekondenskraftverk beräknas köras i försumbar omfattning. Kärnkraft och kolkraft, när den finns, beräknas köras så många timmar som möjligt (ca 8 000 timmar per år).
Förenklingar
Simulatorn är tänkt att ge en känsla för begreppen installerad effekt, tillgänglig effekt och relationen till total energiproduktion. Vi tar inte hänsyn till följande saker
Överföringsförluster
Begränsningar i elnätet
Begränsningar i vattenkraftens reglerförmåga
Bara delvis tagit hänsyn till begränsningar för import/export
Dessa avgränsningar har gjorts för att göra simulatorn enkel att använda och ge största möjliga förståelse utan avkall på trovärdigheten i det större perspektivet.
Övriga produktionsslag antas ha lågt eller inget fast avfall.
Koldioxid CO2
Alla produktionsslag ger upphov till koldioxidutsläpp vid byggnation, bränsleutvinning, drift, rivning, etc. Utsläpp beräknas enligt livcykelmodellen. I första hand har vi använt Vattenfalls beräkningar och i andra hand valt andra källor. Koldioxidutsläpp i simulatorn beräknas enligt följande tabell
Källa: SMHI Vattenkraft orörda älvar, Potential totalt (TWh) 35 Nyttjande tid (h) 4000 Fördelat på fyra älvar baserat på flöden ger följande potential per älv.
Älv
Flöde (m3/s)
Procent
Energi (TWh)
Effekt (MW)
Torneälven
388
35%
12.4
5 662
Kalixälven
295
27%
9.4
4 292
Piteälven
167
15%
5.3
2 420
Vindelälven
249
23%
7.9
3 607
Summa
1 099
100%
35
15 981
Mer om elnät
Elnät används för att distribuera el från elproducenter till konsumenter. Kostnaden för elnäten beror i huvudsak på två faktorer, avstånd mellan produktion och konsumtion och hur effektivt elledningarna utnyttjas (kapacitetsfaktor).
Ett elnät med korta avstånd mellan produktion och konsumtion ger ett relativt billigare elnät jämfört med ett elnät med långa avstånd.
Långa avstånd ger också betydande överföringsförluster. En tumregel är att 6-10 procent av elen förloras per 1000 km i en 400 kilovolt högspänningsledning.
Enligt världsbanken är de genomsnittliga förluster för svenska elnätet 7 procent eller ungefär 10 TWh vilket är jämförbart med vindkraftens produktion 2013.
Ett elnät med korta avstånd och hög utnyttjandegrad per ledning är därför avgörande för att hålla kostnaderna och överföringsförlusterna så låga som möjligt.
För en vanlig elkund är elnätskostnaderna inte sällan högre än kostnaden för själva elen (elhandelskostnaden).
Maskininlärning (Machine Learning, ML) representerar ett nytt paradigm i programmering, där du istället för att programmera explicita regler på ett språk som Java eller C ++, bygger ett system som tränas och lärs upp på data från ett stort antal exempel, för att sedan kunna dra slutsatser av ny data baserat på de mönster som identifierats utifrån träningsdatat. Men hur ser ML egentligen ut? I del ett av Machine Learning Zero to Hero går AI-evangelisten Laurence Moroney (lmoroney @) genom ett grundläggande Hello World-exempel på hur man bygger en ML-modell och introducerar idéer som vi kommer att tillämpa i det senare avsnittet om datorseende (Computer Vision) längre ner på denna sida. Vill du ha en lite mer omfattande introduktion rekommenderar jag Introduction to TensorFlow 2.0: Easier for beginners, and more powerful for experts.
Prova själv den här koden i Hello World of Machine Learning: https://goo.gle/2Zp2ZF3
Basic Computer Vision with ML (ML Zero to Hero, part 2)
I del två av Machine Learning Zero to Hero går AI-evengalisten Laurence Moroney (lmoroney @) genom grundläggande datorseende (Computer Vision) med maskininlärning genom att lära en dator hur man ser och känner igen olika objekt (Object Recognition).
Fashion MNIST – ett dataset med bilder på kläder för benchmarking
Fashion-MNIST är ett forskningsprojekt av Kashif Rasul & Han Xiao i form av ett dataset av Zalandos artikelbilder. Det består av ett träningsset med 60 000 bildexempel och en testuppsättning med 10 000 exempel. Varje exempel är en 28 × 28 pixlar stor gråskalabild, associerad med en etikett från 10 klasser (klädkategorier). Fashion-MNIST är avsett att fungera som en direkt drop-in-ersättning av det ursprungliga MNIST-datasättet för benchmarking av maskininlärningsalgoritmer.
Fashion MNIST dataset
Varför är detta av intresse för det vetenskapliga samfundet?
Det ursprungliga MNIST-datasättet innehåller många handskrivna siffror. Människor från AI / ML / Data Science community älskar detta dataset och använder det som ett riktmärke för att validera sina algoritmer. Faktum är att MNIST ofta är det första datasetet de provar på. ”Om det inte fungerar på MNIST, fungerar det inte alls”, sägs det. ”Tja, men om det fungerar på MNIST, kan det fortfarande misslyckas med andra.”
MNIST Dataset för nummerklassificering
Fashion-MNIST är avsett att tjäna som en direkt drop-in ersättning för det ursprungliga MNIST-datasetet för att benchmarka maskininlärningsalgoritmer, eftersom det delar samma bildstorlek och strukturen för tränings- och testdelningar.
Varför ska man ersätta MNIST med Fashion MNIST? Här är några goda skäl:
Se mer om att koda TensorFlow → https://bit.ly/Coding-TensorFlow Prenumerera på TensorFlow-kanalen → http://bit.ly/2ZtOqA3
Introducing convolutional neural networks (ML Zero to Hero, part 3)
I del tre av Machine Learning Zero to Hero diskuterar AI-evangelisten Laurence Moroney (lmoroney @) CNN-nätverk (Convolutional Neural Networks) och varför de är så kraftfulla i datorseende-scenarier. En ”convolution” är ett filter som passerar över en bild, bearbetar den och extraherar funktioner eller vissa kännetecken (features) i bilden. I den här videon ser du hur de fungerar genom att bearbeta en bild för att se om du kan hitta specifika kännetecken (features) i bilden.
Codelab: Introduktion till invändningar → http://bit.ly/2lGoC5f
Introducing convolutional neural networks (ML Zero to Hero, part 3)
Build an image classifier (ML Zero to Hero, part 4)
I del fyra av Machine Learning Zero to Hero diskuterar AI-evangelisten Laurence Moroney (lmoroney @) byggandet av en bildklassificerare för sten, sax och påse. I avsnitt ett visade vi ett scenario med sten, sax och påse, och diskuterade hur svårt det kan vara att skriva kod för att upptäcka och klassificera dessa. I de efterföljande avsnitten har vi lärt oss hur man bygger neurala nätverk för att upptäcka mönster av pixlarna i bilderna, att klassificera dem, och att upptäcka vissa kännetecken (features) med hjälp av bildklassificeringssystem med ett CNN-nätverk (Convolutional Neural Network). I det här avsnittet har vi lagt all information från de tre första delarna av serien i en.
Colab anteckningsbok: http://bit.ly/2lXXdw5
Rock, papper, saxdatasätt: http://bit.ly/2kbV92O
Build an image classifier (ML Zero to Hero, part 4)