Inomhuscykling i en virtuell värld

Förbättrad teknik och innovativa möjligheter har gjort att inomhuscykling blivit allt mer populärt. Det finns en mängd fantastiska cykeltrainers och plattformar som gör det stimulerande och roligt att cykla inomhus. RGT Cycling är en ny plattform som erbjuder riktiga rutter från hela världen som du kan välja att cykla med på. Det finns en gratis version som är full av fantastiska funktioner och en prenumerationsversion som låter dig importera träningspass från andra plattformar, samt cykla på fler banor eller rutter.

BKool Smart Pro 2 – Smart Trainer

Kolla in filmen så får du lära dig vilka möjligheter en modern virtuell cykeltrainer kan erbjuda i form av träning inomhus på din cykel med en autentisk upplevelse i en virtuell värld.

Läs mer om RGT Cycling på https://www.rgtcycling.com/ .

Läs om BKool:s cykel-simulatorer: https://www.bkool.com/en/cycling-simulator

Information om hur man kan skapa egna virtuella rutter i BKool Simulator från en riktig cykeltur ute i verkligheten:
https://www.smartbiketrainers.com/riding-real-courses-create-ride-real-courses-using-bkool-simulator-3237

Smartare löparskor med inbyggda sensorer och IoT

Uppkopplade sensorer, s k Internet Of Things (IoT) blir allt vanligare och ger gamla traditionella produkter helt nya funktioner och möjligheter. Även kläder har på senare år klivit in i segmentet av högteknologiska produkter i och med modebranschens transformation mot fashiontech. I detta inlägg ska vi titta närmare på hur en löparsko som försetts med inbyggda sensorer och trådlös uppkoppling till mobiltelefon kan förändra användarupplevelsen och tillsammans med en tillhörande mobilapp kan ge realtidsfeedback och coacha dig så att du lär dig springa effektivare och bättre.
Altras designfilosofi skiljer sig lite ifrån andra traditionella skotillverkare. Du kan läsa mer på sidan Varför Altra. För den här modellen har de valt att implementera den nya tekniken i en skomodell som även går att köpa utan tekniken.
Se uppgifter och diskussionsfrågor längst ner på denna sida.

Atra Torin IQ – nya generationens löpsko

Altra Torin IQ

En intelligent löpsko och din nya löpcoach

Altra Torin IQ - smart uppkopplad löpsko med coachande mobilapp
Altra Torin IQ – smart uppkopplad löpsko med coachande mobilapp

Altra IQ Torin är en intelligent löpsko som coachar och ger feedback med hjälp av steganalys. Skon är utrustad med IoT-teknologin som kommunicerar med träningsklockan eller telefonapplikationen från iFit. Du får live feedback och löptips rakt I din klocka eller telefon medan du rör på dig. Skon mäter kollisionskrafter i sulans olika delar vilket hjälper att hitta en mer balanserad löpning. Du får information om sulans träffpunkt med marken vilket ger möjligheten att följa hur löpsteget ändras under loppet. Idén är att främja ett effektivt och hälsosamt löpsteg. Skon mäter också stegfrekvens som är en indikation på löpformen och hjälper till med att upprätthålla en önskad stegrytm i löpningen.

Altra Torin IQ – reklamfilm

Teknologi

Högteknologisk löparsko som synkroniserar med iFit®-klockor, Android eller Apple. Ingen nivåskillnad tå-häl, snabbtorkande mesh i ovandelen och bekväm dämpning.

• Applikation till iphone, Android, Google play
• Trådlös kommunikation till skosensorn
• Dolda sensorer inbäddade i mellansulan
• Registrering av landningszon
• Trycksensorer i sulans olika delar
• Löptips under löpningen från appen
• Realtids löpdata via IQ applikationen och analys
• Du kan även följa med tid, distans och hastighet

Altra IQ är den första högteknologiska löparskon som mäter stegfrekvens, tryckbelastning och löparstil. Perfekt för den som vill analysera sin löpning. 

Altra Torin IQ - smart uppkopplad löpsko med coachande mobilapp
Altra Torin IQ – smart uppkopplad löpsko med coachande mobilapp

Under innersulan sitter en trycksensor som synkroniserar trådlöst med iFit®-klockor, Android eller Apple. Den här sensorn ger dig feedback i realtid under löprundan, antingen på displayen eller genom ljudsignaler. Detta hjälper löparen att förbättra sin löpstil, fotisättning och frekvens under löprundan.

Altra Torin IQ har trycksensorer, accelerometrar och trådlöst uppkopplade microcontrollers inbyggt i varje sko.
Altra Torin IQ har trycksensorer, accelerometrar och trådlöst uppkopplade microcontrollers inbyggt i varje sko.

Ovandel i slitstark, snabbtorkande Airmesh som både ger ökad ventilering och komfort. FootShape™ tåbox ger tårna extra plats att sprida ut sig för bättre komfort, stabilitet och hastighet. 

Mellansulan är lätt dämpad med A-Bound™ som ger energirespons i varje steg och en heldämpad Zero Drop-plattform ger stötdämpning och en mer naturlig löprörelse. InnerFlex™ gör skon mer flexibel i mellansulan. 

Specifikationer:

– Ovandel: Snabbtorkande mesh
– Innersula: 6 mm Contour
– Mellansula: Dual Layer EVA med A-Bound™ Top Layer & InnerFlex™
– Plattform: Natural Foot Positioning: FootShape™ Toe Box med heldämpad Zero Drop™ Platform
– Yttersula: FootPod
– Vikt herr: 230 g
– Vikt dam: 184 g
– Sulans höjd: 24 mm
– Nivåskillnad tå-häl: 0 mm

Teknologi:

– Trådlös kommunikation
– Mätning av fotisättning
– Trycksensor
– Löptips genom ljudsignaler längs vägen
– Statistikregistrering
– Spårning av loppet i efterhand

Användare: Herr eller Dam (olika skomodeller)

  • Löpunderlag: Asfalt 
  • Pronation: Neutral 
  • Stabilitet: ¡ 
  • Löpkänsla: ¡ 
  • Underlag: Asfalt 
  • Stabilitet: Neutral 
  • Dubbar: Nej 
  • Drop: 0 mm 
  • Vattentät: Nej 
  • Ovandel: Fast Drying Mesh, FootShape 
  • Mellansula: Dual Layer EVA with A-Bound, Top Layer & Innerflex 
  • Dämpning: Full Cushioning Zero Drop Platform 
  • Yttersula: Footpod 
In this video, Brian Beckshead, President and Co-Founder of Altra, provides a look at the IQ Technology and why it can help you run better.

Lite mer information om Altra Torin IQ, tankarna bakom designen och beskrivning av funktionerna hittar du i följande engelska text från en artikel med en intervju av grundarna av Altra:

”For too long, the two main metrics to measure your run have been ’how far?’ and ’how fast?'” said Altra president and co-founder Brian Beckstead. ”With Altra Torin IQ shoes, you get a much richer picture of your run with real-time coaching. We analyze the problems in real time, and provide you with proactive suggestions so you can correct and improve right away. Running has never been smarter.”

Altra Torin IQ powered by iFit is the first and only shoe on the market to feature full-length, razor-thin, featherweight sensors and transmitters embedded in the midsole of each shoe — providing runners with live data for each foot individually.  Using Bluetooth technology, the shoe communicates directly with the Altra IQ iFit app on the runner’s smartphone to continuously transmit data in four key areas: landing zone, impact rate, contact time and cadence. The app also tracks pace, distance and time.

During the run, Altra Torin IQ serves as a stride coach, relaying real-time feedback in two ways: through the app screen and audible coaching. Runners have the ability to customize how often to receive live coaching based on their preferences.

”Many running injuries can be prevented by learning efficient, low-impact running form.  However, it can be really hard to analyze running form on yourself,” said Altra founder Golden Harper.  ”This shoe is designed to help make runners more efficient and to extend the running career of road and trail warriors out there. Intelligence is power, and Altra Torin IQ can provide insights like nothing else.”

”The coolest thing to me is that we are able to give runners coaching tips in their moments of greatest need,” Harper continued. ”For example, as a runner’s form starts to slip near the end of a race, the IQ shoe will recognize that and give them coaching tips to get them back on the right track.”

Both Harper and Beckstead agree the Altra Torin IQ shoe is an excellent training tool for a range of runners, from beginners who want to avoid bad habits, to elites who want to fine tune their form.

Altra Elite Athlete Zach Bitter has logged hundreds of miles testing Altra Torin IQ, including training for his American record 100-mile time of 11:40:55, set at the 2015 Desert Solstice Invitational. Bitter logs 120 to 140-mile weeks during training.  His next major race is the legendary Western States Endurance Run in July in California.

”The beauty of the Altra IQ technology is its variety of uses. It’s quick and accurate workout feedback can be applied right on the spot, with coaching tips that help correct problems rather than just telling you that you’re doing something wrong,” Bitter said. ”As a high-mileage runner, I think one of the coolest aspects is the information I learn about how my stride is affected over distance, through injury, sore muscles and such,” Bitter said. ”Many variables affect your training, so having baseline data of what you typically do while healthy and being able to spot-check that during a race is invaluable.”

Altra IQ powered by iFit app specs:

Landing Zone:

Landing zone helps runners avoid extremes such as landing with a harsh heel strike or too far forward on the toes. The Altra IQ app reports landing zone feedback with audio tips, as well as visual feedback on the app screen to give runners a clear idea of where each foot is hitting the ground.

”Our goal is not to change a runner’s foot strike, but instead to provide them with the tools to understand a proper foot strike is the result of having proud posture, compact arms and a high cadence — all the things we’ve been teaching in our Run Better clinics since Altra was founded,” Harper said.

Therefore, live coaching tips included in the Altra IQ app guide runners to make changes to their posture, arms, or cadence that lead to a low-impact landing. For example, if the runner is over-striding, or landing on their toes, they’ll receive an audio coaching tip that will help correct and optimize their landing.

”We’re hoping to guide runners into a ’safe zone.’ As each runner is different, their individual landing zone may vary between a soft heel landing and a slight forefoot landing,” Harper said. ”In general, the goal is to avoid the extremes of landing as a means of reducing injury and stress on the body.”

Impact Rate:

Altra Torin IQ’s dual sensors monitor how hard each foot hits the ground and identifies left–right imbalances in their stride, for a metric Altra calls ”impact rate.” Coaching guidance from the app helps runners land more softly and achieve more balance, which may lead to a lower likelihood of injury.  Altra IQ reports impact rate in two ways: a number expressed in millig-units (mG) and as a visual on the app screen showing how balanced the runner is.

”The practical application of impact rate will be during a run or race where pace is generally constant,” said Harper. ”As a runner loses form, their impact rate may increase. Therefore, monitoring impact rate during a run or race is an excellent way to ensure efficient form. As an example, an individual running at a constant pace with poor form will have a higher impact rate number than they would at the same pace with efficient form.”

Harper added, ”As runners increase speed, impact rate will naturally increase, even when running with efficient technique. The goal is for runners to maintain a consistent impact rate number while running at a given pace.”

Contact Time:

Running performance is contingent on many variables, and ground contact time is one of the lesser known.  Altra IQ contact time data shows runners how much time each foot is in contact with the ground and is reported as a number of milliseconds (ms), with a separate score for each foot.  With this data, runners can improve left-right balance and optimize contact time. 

”Lower contact times are often associated with a higher cadence and more efficient, lower impact foot strikes,” Harper said.  ”Additionally, a left-right imbalance may serve as a clue revealing a current, past, or forthcoming injury.”

Cadence:

Cadence is the live ”pulse” of a run and a key factor in form, foot strike and efficiency.  Altra Torin IQ’s live cadence tracking provides data to keep foot turnover at the optimal rate for the current running pace, helping runners become more fluid.  Altra IQ powered by iFit reports cadence as a number of total steps per minute. In general, working up to a higher cadence in the 170 to 180 range improves running form and efficiency.

Uppgifter och diskussionsfrågor

  1. Har du sett någon liknande produkt med motsvarande funktionalitet tidigare? Vilken i så fall?
  2. Vilka liknande produkter med motsvarande funktionalitet hittar du nu om du Googlar?
  3. Ge exempel hur de liknar varandra och vad som eventuellt skiljer dem åt.
  4. Vilka komponenter behövs för att göra en vanlig löparsko till en smart sko med samma funktioner som Altra Torin IQ?
  5. Vilka yrkeskategorier och vilken kompetens behövs för att designa och konstruera en smart sko som Altra Torin IQ?
  6. Ge exempel på några andra produkter som inte är ”smarta skor” men som har liknande funktionalitet eller kan ge motsvarande information om din löpning.
  7. Om du skulle designa och konstruera en smart löparsko idag, vilka funktioner skulle du då satsa på?
  8. När Altra Torin IQ lanserades år 2017 var de först i världen. Hur vanligt tror du att det kommer vara med smarta uppkopplade löparskor år 2025?
  9. Hur innovativ anser du att Altra Torin IQ var som produkt när den lanserades 2017 (1-5, där 1 = inte innovativ alls, 2 = lite innovativ, 3 = ganska innovativ, 4 = innovativ, 5 = mycket innovativ)?

Programmera biologiska celler – nästa mjukvarurevolution

The next software revolution – programming biological cells

00:04
The second half of the last century was completely defined by a technological revolution: the software revolution. The ability to program electrons on a material called silicon made possible technologies, companies and industries that were at one point unimaginable to many of us, but which have now fundamentally changed the way the world works. The first half of this century, though, is going to be transformed by a new software revolution: the living software revolution. And this will be powered by the ability to program biochemistry on a material called biology. And doing so will enable us to harness the properties of biology to generate new kinds of therapies, to repair damaged tissue, to reprogram faulty cells or even build programmable operating systems out of biochemistry. If we can realize this — and we do need to realize it — its impact will be so enormous that it will make the first software revolution pale in comparison.

01:11
And that’s because living software would transform the entirety of medicine, agriculture and energy, and these are sectors that dwarf those dominated by IT. Imagine programmable plants that fix nitrogen more effectively or resist emerging fungal pathogens, or even programming crops to be perennial rather than annual so you could double your crop yields each year. That would transform agriculture and how we’ll keep our growing and global population fed. Or imagine programmable immunity, designing and harnessing molecular devices that guide your immune system to detect, eradicate or even prevent disease. This would transform medicine and how we’ll keep our growing and aging population healthy.

01:59
We already have many of the tools that will make living software a reality. We can precisely edit genes with CRISPR. We can rewrite the genetic code one base at a time. We can even build functioning synthetic circuits out of DNA. But figuring out how and when to wield these tools is still a process of trial and error. It needs deep expertise, years of specialization. And experimental protocols are difficult to discover and all too often, difficult to reproduce. And, you know, we have a tendency in biology to focus a lot on the parts, but we all know that something like flying wouldn’t be understood by only studying feathers. So programming biology is not yet as simple as programming your computer. And then to make matters worse, living systems largely bear no resemblance to the engineered systems that you and I program every day. In contrast to engineered systems, living systems self-generate, they self-organize, they operate at molecular scales. And these molecular-level interactions lead generally to robust macro-scale output. They can even self-repair.

03:07
Consider, for example, the humble household plant, like that one sat on your mantelpiece at home that you keep forgetting to water. Every day, despite your neglect, that plant has to wake up and figure out how to allocate its resources. Will it grow, photosynthesize, produce seeds, or flower? And that’s a decision that has to be made at the level of the whole organism. But a plant doesn’t have a brain to figure all of that out. It has to make do with the cells on its leaves. They have to respond to the environment and make the decisions that affect the whole plant. So somehow there must be a program running inside these cells, a program that responds to input signals and cues and shapes what that cell will do. And then those programs must operate in a distributed way across individual cells, so that they can coordinate and that plant can grow and flourish.

03:59
If we could understand these biological programs, if we could understand biological computation, it would transform our ability to understand how and why cells do what they do. Because, if we understood these programs, we could debug them when things go wrong. Or we could learn from them how to design the kind of synthetic circuits that truly exploit the computational power of biochemistry.

04:25
My passion about this idea led me to a career in research at the interface of maths, computer science and biology. And in my work, I focus on the concept of biology as computation. And that means asking what do cells compute, and how can we uncover these biological programs? And I started to ask these questions together with some brilliant collaborators at Microsoft Research and the University of Cambridge, where together we wanted to understand the biological program running inside a unique type of cell: an embryonic stem cell. These cells are unique because they’re totally naïve. They can become anything they want: a brain cell, a heart cell, a bone cell, a lung cell, any adult cell type. This naïvety, it sets them apart, but it also ignited the imagination of the scientific community, who realized, if we could tap into that potential, we would have a powerful tool for medicine. If we could figure out how these cells make the decision to become one cell type or another, we might be able to harness them to generate cells that we need to repair diseased or damaged tissue. But realizing that vision is not without its challenges, not least because these particular cells, they emerge just six days after conception. And then within a day or so, they’re gone. They have set off down the different paths that form all the structures and organs of your adult body.

05:51
But it turns out that cell fates are a lot more plastic than we might have imagined. About 13 years ago, some scientists showed something truly revolutionary. By inserting just a handful of genes into an adult cell, like one of your skin cells, you can transform that cell back to the naïve state. And it’s a process that’s actually known as ”reprogramming,” and it allows us to imagine a kind of stem cell utopia, the ability to take a sample of a patient’s own cells, transform them back to the naïve state and use those cells to make whatever that patient might need, whether it’s brain cells or heart cells.

06:30
But over the last decade or so, figuring out how to change cell fate, it’s still a process of trial and error. Even in cases where we’ve uncovered successful experimental protocols, they’re still inefficient, and we lack a fundamental understanding of how and why they work. If you figured out how to change a stem cell into a heart cell, that hasn’t got any way of telling you how to change a stem cell into a brain cell. So we wanted to understand the biological program running inside an embryonic stem cell, and understanding the computation performed by a living system starts with asking a devastatingly simple question: What is it that system actually has to do?

07:13
Now, computer science actually has a set of strategies for dealing with what it is the software and hardware are meant to do. When you write a program, you code a piece of software, you want that software to run correctly. You want performance, functionality. You want to prevent bugs. They can cost you a lot. So when a developer writes a program, they could write down a set of specifications. These are what your program should do. Maybe it should compare the size of two numbers or order numbers by increasing size. Technology exists that allows us automatically to check whether our specifications are satisfied, whether that program does what it should do. And so our idea was that in the same way, experimental observations, things we measure in the lab, they correspond to specifications of what the biological program should do.

08:02
So we just needed to figure out a way to encode this new type of specification. So let’s say you’ve been busy in the lab and you’ve been measuring your genes and you’ve found that if Gene A is active, then Gene B or Gene C seems to be active. We can write that observation down as a mathematical expression if we can use the language of logic: If A, then B or C. Now, this is a very simple example, OK. It’s just to illustrate the point. We can encode truly rich expressions that actually capture the behavior of multiple genes or proteins over time across multiple different experiments. And so by translating our observations into mathematical expression in this way, it becomes possible to test whether or not those observations can emerge from a program of genetic interactions.

08:55
And we developed a tool to do just this. We were able to use this tool to encode observations as mathematical expressions, and then that tool would allow us to uncover the genetic program that could explain them all. And we then apply this approach to uncover the genetic program running inside embryonic stem cells to see if we could understand how to induce that naïve state. And this tool was actually built on a solver that’s deployed routinely around the world for conventional software verification. So we started with a set of nearly 50 different specifications that we generated from experimental observations of embryonic stem cells. And by encoding these observations in this tool, we were able to uncover the first molecular program that could explain all of them.

09:43
Now, that’s kind of a feat in and of itself, right? Being able to reconcile all of these different observations is not the kind of thing you can do on the back of an envelope, even if you have a really big envelope. Because we’ve got this kind of understanding, we could go one step further. We could use this program to predict what this cell might do in conditions we hadn’t yet tested. We could probe the program in silico.

10:08
And so we did just that: we generated predictions that we tested in the lab, and we found that this program was highly predictive. It told us how we could accelerate progress back to the naïve state quickly and efficiently. It told us which genes to target to do that, which genes might even hinder that process. We even found the program predicted the order in which genes would switch on. So this approach really allowed us to uncover the dynamics of what the cells are doing.

10:39
What we’ve developed, it’s not a method that’s specific to stem cell biology. Rather, it allows us to make sense of the computation being carried out by the cell in the context of genetic interactions. So really, it’s just one building block. The field urgently needs to develop new approaches to understand biological computation more broadly and at different levels, from DNA right through to the flow of information between cells. Only this kind of transformative understanding will enable us to harness biology in ways that are predictable and reliable.

11:12
But to program biology, we will also need to develop the kinds of tools and languages that allow both experimentalists and computational scientists to design biological function and have those designs compile down to the machine code of the cell, its biochemistry, so that we could then build those structures. Now, that’s something akin to a living software compiler, and I’m proud to be part of a team at Microsoft that’s working to develop one. Though to say it’s a grand challenge is kind of an understatement, but if it’s realized, it would be the final bridge between software and wetware.

11:48
More broadly, though, programming biology is only going to be possible if we can transform the field into being truly interdisciplinary. It needs us to bridge the physical and the life sciences, and scientists from each of these disciplines need to be able to work together with common languages and to have shared scientific questions.

12:08
In the long term, it’s worth remembering that many of the giant software companies and the technology that you and I work with every day could hardly have been imagined at the time we first started programming on silicon microchips. And if we start now to think about the potential for technology enabled by computational biology, we’ll see some of the steps that we need to take along the way to make that a reality. Now, there is the sobering thought that this kind of technology could be open to misuse. If we’re willing to talk about the potential for programming immune cells, we should also be thinking about the potential of bacteria engineered to evade them. There might be people willing to do that. Now, one reassuring thought in this is that — well, less so for the scientists — is that biology is a fragile thing to work with. So programming biology is not going to be something you’ll be doing in your garden shed. But because we’re at the outset of this, we can move forward with our eyes wide open. We can ask the difficult questions up front, we can put in place the necessary safeguards and, as part of that, we’ll have to think about our ethics. We’ll have to think about putting bounds on the implementation of biological function. So as part of this, research in bioethics will have to be a priority. It can’t be relegated to second place in the excitement of scientific innovation.

13:26
But the ultimate prize, the ultimate destination on this journey, would be breakthrough applications and breakthrough industries in areas from agriculture and medicine to energy and materials and even computing itself. Imagine, one day we could be powering the planet sustainably on the ultimate green energy if we could mimic something that plants figured out millennia ago: how to harness the sun’s energy with an efficiency that is unparalleled by our current solar cells. If we understood that program of quantum interactions that allow plants to absorb sunlight so efficiently, we might be able to translate that into building synthetic DNA circuits that offer the material for better solar cells. There are teams and scientists working on the fundamentals of this right now, so perhaps if it got the right attention and the right investment, it could be realized in 10 or 15 years.

14:18
So we are at the beginning of a technological revolution. Understanding this ancient type of biological computation is the critical first step. And if we can realize this, we would enter in the era of an operating system that runs living software.

Andningen påverkar din hjärna

I nedanstående artikel från Quartz kan vi läsa om hur forskare identifierat vad som händer i vår hjärna under djupandning.

Neuroscientists have identified how exactly a deep breath changes your mind

By Moran Cerf, November 19, 2017, Kellogg School of Management, Northwestern University

Breathing is traditionally thought of as an automatic process driven by the brainstem—the part of the brain controlling such life-sustaining functions as heartbeat and sleeping patterns. But new and unique research, involving recordings made directly from within the brains of humans undergoing neurosurgery, shows that breathing can also change your brain.

Simply put, changes in breathing—for example, breathing at different paces or paying careful attention to the breaths—were shown to engage different parts of the brain.

Humans’ ability to control and regulate their brain is unique: e.g., controlling emotions, deciding to stay awake despite being tired, or suppressing thoughts. These abilities are not trivial, nor do humans share them with many animals. Breathing is similar: animals do not alter their breathing speed volitionally; their breathing normally only changes in response to running, resting, etc. Questions that have baffled scientists in this context are: why are humans capable of volitionally regulating their breathing, and how do we gain access to parts of our brain that are not normally under our conscious control. Additionally, is there any benefit in our ability to access and control parts of our brain that are typically inaccessible? Given that many therapies—Cognitive Behavioral Therapy, trauma therapy, or various types of spiritual exercises—involve focusing and regulating breathing, does controlling inhaling and exhaling have any profound effect on behavior?

This recent study finally answers these questions by showing that volitionally controlling our respirational, even merely focusing on one’s breathing, yield additional access and synchrony between brain areas. This understanding may lead to greater control, focus, calmness, and emotional control.

The study, conducted by my post-doctoral researcher, Dr. Jose Herrero, in collaboration with Dr. Ashesh Mehta, a renowned neurosurgeon at NorthShore University Hospital in Long Island, began by observing brain activity when patients were breathing normally. Next, the patients were given a simple task to distract them: clicking a button when circles appeared on the computer screen. This allowed Dr. Herrero to observe what was happening when people breath naturally and do not focus on their breathing. After this, the patients were told to consciously increase the pace of breathing and to count their breaths. When breathing changed with the exercises, the brain changed as well. Essentially, the breathing manipulation activated different parts of the brain, with some overlap in the sites involved in automatic and intentional breathing.

The findings provide neural support for advice individuals have been given for millennia: during times of stress, or when heightened concentration is needed, focusing on one’s breathing or doing breathing exercises can indeed change the brain. This has potential application to individuals in a variety of professions that require extreme focus and agility. Athletes, for example, have long been known to utilize breathing to improve their performance. Now, this research puts science behind that practice.

Beyond studying the ability of humans to control and regulate their neural activity volitionally, the study was also unique in that it utilized a rare method of neural research: directly looking inside the brains of awake and alert humans. Typical neuroscience studies involving humans use imaging techniques (i.e. fMRI or EEG) to infer the neural activity in people’s brain from outside the skull. But studies involving electrodes implanted in humans’ brains are rare. The ability to look inside the humans’ brains allows us to study thinking, deciding and even imagining or dreaming by directly observing the brain. The study subjects in our work were patients who had electrodes implanted in their brain as part of a clinical treatment for epilepsy. These patients were experiencing seizures that could not be controlled by medication and therefore required surgical interventions to detect the seizure focus for future resection.

Given that detection requires the patient to have a spontaneous seizure in order to identify the exact seizure onset location, which can take days, the patients are kept in the hospital with electrodes continuously monitoring their brain activity.

The research findings show that the advice to “take a deep breath” may not just be a cliché. Exercises involving volitional breathing appear to alter the connectivity between parts of the brain and allow access to internal sites that normally are inaccessible to us. Further investigation will now gradually monitor what such access to parts of our psyche that are normally hidden can reveal.

Reebok: Spring fort som fan – få ett par skor

Avancerad teknik möjliggjorde en uppmärksammad och lyckad reklamkampanj som stärkte Reeboks varumärke.

Läs artikeln på Resumé.

Lördagens event på Drottninggatan krävde ditt snabbaste jag. De som lyckades tilldelades ett par skor från Reebok. Se Animals nya kampanj här.

Under helgen byggde Reebok och reklambyrån Animal upp en specialbyggd utomhustavla på Drottninggatan i Stockholm där de uppmuntrade folk att göra ett snabbhetstest. Alla som sprang snabbare än 17 kilometer i timmen låste upp luckorna i tavlan och fick hämta ut den nya Reebok-modellen ZPump 2.0. Löpningen mättes med en inbyggd hastighetskamera.

Bakom den livfulla kampanjen står Animal, som även är skapare till TrumpDonald.org, som blev en succé världen över. Den tekniska lösningen konstruerades, byggdes och installerades av Niclas Ekholm på IKT-Labbet.

– Vi gillar tanken på att ta en klassisk annonsyta och förvandla den till något unikt och uppseendeväckande. Det här blir en direkt upplevelse för människorna, samtidigt som Reebok kan ge dem något av stort värde, säger Markus Schramm, creative på reklambyrån Animal, i en kommentar.

– För oss på Reebok är det viktigt att göra saker på riktigt och verkligen aktivera vår målgrupp. Vi vill inspirera människor till att springa och testa sina gränser, även när de inte är på gymmet. Det är vad vår tagline Be More Human verkligen handlar om.

dsfds
ZPump 2.0 Speed Cam – reklamkampanj för Reebok på Drottninggatan i Stockholm

Designa bebisar med CRISPR

Med CRISPR-tekniken kan vi förändra människans utveckling.
Vi kan genmanipulera embryons DNA så att bebisarna blir immuna mot vissa sjukdomar, får högre IQ eller minskar risken för att utveckla fetma.

Intresset för CRISPR/Cas9 har fullständigt exploderat pga låga kostnader för laborativa experiment och att det är en lättillgänglig och effektiv teknik med mycket stor potential.

CRISPR/Cas9 kan förenklat beskrivas som en gensax där proteinet Cas9 har förmågan att klippa av en DNA-kedja så att vissa DNA-fragment försvinner.
CRISPR-tekniken används bland annat av molekylärbiologer och
växtfysiologer för att göra ändringar i arvsmassan hos olika organismer genom att påverka DNA-strängar i cellkärnorna. Eftersom inget nytt främmande DNA tillförs utifrån har CRISPR hamnat i en gråzon för vad som annars betraktas som Genetiskt Modifierade Organismer (GMO) och som redan är hårt reglerat i många länder.

Exempel på sjukdomar som kan botas och tillstånd som kan förhindras med hjälp av CRISPR/Cas9-tekniken är:
Cancer, HIV, smittkoppor, kolera, Alzheimers, demens, fetma, åldrande m.m.

Många framgångsrika CRISPR-försök och behandlingar av redan sjuka människor har utförts runt om i världen. Men det finns internationella överenskommelser som reglerar och förbjuder genmodifiering av människors könsceller och embryon, eftersom det skapar en permanent modifiering av den mänskliga arvsmassan som sedan förs vidare till kommande generationer. Det finns risker med det som ännu inte är klarlagda.

Crispr kan förhindra svår fetma – NyTeknik 2018-12-13

Världens första genmodifierade bebisar har fötts!
I november 2018 hävdade en kinesisk forskare vid namn He Jiankui att han hjälpt till att skapa världens första genmodifierade tvillingbarn. Deras pappa var HIV-positiv, men He Jiankui och hans forskarteam genomförde fertilitetsbehandlingar där de använt gensaxen CRISPR/Cas9 för att ta bort CCR5-genen på embryona för att göra bebisarna immuna mot HIV. Behandlingen lyckades och resulterade i att två tvillingflickor föddes med ett genetiskt skydd mot hiv-smitta.
Här berättar han själv om sitt experiment som han påstår även ska kunna ge immunitet mot kolera och smittkoppor:


About Lulu and Nana: Twin Girls Born Healthy After Gene Surgery As Single-Cell Embryos

Diskussionsfrågor (E P A):
Svara först på frågorna Enskilt. Diskutera sedan frågorna och jämför era svar Parvis. Gå till slut igenom Alla svaren i helklass.
OBS! Skriv ner dina svar.

  1. Vad tycker du om He Jiankuis experiment med CRISPR/Cas9 på mänskliga embryon? Bra eller dåligt? Motivera ditt svar.
  2. Gjorde han rätt som använde CRISPR-tekniken på detta pars blivande bebisar? Motivera ditt svar.
  3. Vilka fler sjukdomar tycker du CRISPR borde användas mot för att förändra arvsmassan så att sårbarheten minskar eller helt elimineras? Motivera ditt svar.
  4. Tycker du att CRISPR borde få användas till att förändra andra genetiska egenskaper hos embryon innan barnen är födda? Vilka egenskaper i så fall? Motivera ditt svar.

Fortsättning …
Nyheten om världens första genmanipulerade barn slog ner som en bomb över hela världen och He Jiankui fick ta emot en massiv kritik för det som många forskare anser är oetiskt, riskfyllt och alldeles för outforskat.

AP News rapporterade om händelsen och gjorde följande kritiska reportage:
Chinese researcher claims first gene-edited babies, by MARILYNN MARCHIONE, November 26, 2018

AP News reports:
Chinese researcher claims first gene-edited babies

En kort tid efter det att nyheten om CRISPR-bebisarna presenterats blev He Jiankui fängslad och det ryktas om att han riskerar dödsstraff.

Crispr-forskaren He Jiankui uppges riskera dödsstraff – Ny Teknik 2019-01-09

Så vill WHO förhindra fler Crispr-bebisar 2018-12-18

En utförlig bakgrundsartikel från Science Magazine: The untold story of the ‘circle of trust’ behind the world’s first gene-edited babies, By Jon Cohen Aug. 1, 2019

Diskussionsfrågor (E P A):
Svara först på frågorna Enskilt. Diskutera sedan frågorna och jämför era svar Parvis eller i Basgrupper. Gå till slut igenom 8:e frågan gemensamt i helklass. OBS! Skriv ner dina svar.

5. Är det rätt att fängsla He Jiankui? Motivera ditt svar.

6. Vad handlar kritiken om? Sammanfatta och ge exempel på argument mot att använda CRISPR-behandling av embryon.

7. Läs igenom dina svar på frågorna 1-4 från första diskussionsuppgiften. Har du nu ändrat uppfattning på något sätt? Skriv ner dina nya svar ifall du ändrat dig. Motivera ditt svar och beskriv varför du ändrat uppfattning.

8. Kontrollera hur många i klassen som ändrat sin uppfattning i frågorna efter att ha läst de kritiska nyhetsartiklarna eller lyssnat på det kritiska nyhetsreportaget. Hur stor andel/procent av klassen är det? Åt vilket håll har det ändrats (för eller emot)? Varför har de ändrat uppfattning?

Fördjupningsartiklar och mer information om CRISPR/Cas9

CRISPR är en förkortning av engelska Clustered Regularly Interspaced Short Palindromic Repeats.

Vill du veta mer om vad CRISPR/Cas9-tekniken är, hur den fungerar och vad den kan användas till kan du titta på den animerade engelska filmen nedan. (Biologi och Engelska)

Genetic Engineering Will Change Everything Forever – CRISPR (16:03)
Designer babies, the end of diseases, genetically modified humans that never age. Outrageous things that used to be science fiction are suddenly becoming reality. The only thing we know for sure is that things will change irreversibly.

(Biologi/Engelska) Här nedan är en utförlig artikel i Nature om CRISPR/Cas9, genmanipulation, programmerbar DNA, RNA, RNAi, Epigenetik m.m. Det finns även en sammanfattande inspelad intervju på engelska länkad i artikeln. CRISPR: gene editing is just the beginning – The real power of the biological tool lies in exploring how genomes work. – nature, 07 March 2016

CRISPR har demokratiserat genmodifiering
En bidragande orsak till varför intresset för CRISPR ökat så mycket de senaste åren handlar om en kombination av att tekniken demokratiserats på så sätt att den är lättillgänglig för alla med ett labb till en låg kostnad. Den erbjuder stora möjligheter inom ett brett spektrum av olika tillämpningar. Tekniken ger ett snabbt resultat, vilket gör forskningen billigare och mer effektiv.

Vad händer i Sverige på CRISPR-fronten?
För en historisk återblick och exempel på svenska forskningsinitiativ och intervjuer med svenska forskare inom CRISPR-området rekommenderas följande artikel: Ny genteknik väcker etiska frågor
I den länkade artikeln ovan intervjuas Niklas Juth, som forskar i medicinsk etik vid centrum för hälso- och sjukvårdsetik vid Karolinska Institutet.
Fredrik Lanner vid Karolinska Institutets institution för klinisk vetenskap, intervention och teknik, enheten för obstetrik/gynekologi, håller på med en liknande forskning på mänskliga embryon kopplat till infertilitetsbehandling som den kinesiske He Jiankui gjorde. Han berättar sitt perspektiv och syn på det.
Giulia Gaudenzi, doktorand på institutionen för neurovetenskap på Karolinska Institutet, och som forskar om hjärnans utveckling berättar också om hur och varför hon börjat använda CRISPR i sin forskning.

Addgene.org, som är en nonprofit-organisation, hjälper forskare att lagra, arkivera, dokumentera, informera och distribuera sina plasmider (ringformade DNA-molekyler) så att även andra forskare kan ta del av resultaten och jobba vidare med egen forskning. Addgene distribuerar fler än 70000 plasmider på uppdrag av över 4000 framstående laboratorium över hela världen. På Addgenes hemsida kan man söka efter DNA och beställa både plasmider och CRISPR-verktyg för att genomföra sina egna experiment.

Learn the benefits and logistics of depositing plasmids at Addgene.

Samtidigt som demokratiseringen av genredigering med hjälp av CRISPR har stora fördelar, kan det även få oväntade och oönskade effekter.

Diskussionsfrågor/uppgifter:

9. Vad händer när människan tar makt över evolutionen?
(Svenska, Biologi, Samhällskunskap, Etik, Teknik, Religion)

10. Vilka möjligheter, risker och konsekvenser kan CRISPR-tekniken innebära på samhället och ekosystemen med människan, djur, växter och vår miljö?
(Svenska, Biologi, Geografi, Samhällskunskap, Etik, Teknik, Religion)

11. Vilka yrken kommer påverkas som en konsekvens av en ökad användning av CRISPR-tekniken?
(SYV, Svenska, Biologi, Geografi, Samhällskunskap, Juridik, Teknik, Religion)

Olika lagar, regler och attityder i olika delar av världen
Här är en artikel från genteknik.se om hur Australien moderniserar sin gentekniklagstiftning.

I Sverige regleras genmodifiering, GMO och CRISPR i enlighet med EU-lagar och direktiv. Du kan läsa mer om det här:
https://genteknik.nu/lagstiftning/

När det kommer till det etiska frågorna finns det bra information på https://genteknik.nu/etik/

Design-/konstruktionsprojekt – Käpphästhopphinder eller Minihinder

Läsårets första design- och konstruktionsprojekt i kurserna Design 1, Konstruktion 1 och CAD 1 för våra teknikelever på Innovationsgymnasiet i Helsingborg blev ett ämnesövergripande produktutvecklingsprojekt som går ut på att utveckla käpphästhopphinder, eller s k minihinder, som grundskoleelever i mellanstadiet ska kunna tillverka och bygga i trä-/metallslöjden. Tanken är sedan att dessa hopphinder ska användas av elever från förskoleklass upp till årskurs 6 på de olika skolornas skolgårdar på fritids och under raster.

Projektet involverar många viktiga moment och aspekter från en produktutvecklings alla faser och processteg, från idé till färdig produkt. Mer info om projektet kommer publiceras här löpande.

Den här inspirationsfilmen från ”Minihinder Equipe” visar exempel på hur dessa minihinder kan se ut och hur de används.

Här är en artikel där de bygger egna käpphästhopphinder.
https://svenska.yle.fi/artikel/2018/11/08/bygg-proffsiga-hinder-till-kapphastloppet

Filmklippet nedan är från artikeln och i den berättar och visar de hur man bygger sina egna hopphinder.



Apple Watch upptäckte oregelbunden hjärtrytm i stor amerikansk studie

Uppgiftskod: AWUOHISAS-TKSVBISH

Frågeställning: Hur kan bärbar konsumentelektronik och artificiell intelligens användas inom sjukvården för att rädda liv?

Bildresultat för apple watch 3 pulse
Bild på Apple Watch med tillhörande hälso-app för att mäta hjärtats puls.
Photo: Apple

Översatt artikel från : https://www.reuters.com/article/us-health-heart-apple/apple-watch-detects-irregular-heart-beat-in-large-u-s-study-idUSKCN1QX0EI

3-10 minuters lästid

(Reuters) – Apple Watch kunde upptäcka oregelbundna hjärtpulsfrekvenser som kan signalera behovet av ytterligare övervakning för att upptäcka ett allvarligt hjärtrytmproblem, enligt data från en stor studie finansierad av Apple Inc, som visar en potentiell framtida roll för bärbar konsumentelektronik (s k wearables) inom vården.

Bild på ett pumpande hjärta som visar hjärtats funktion.

Forskare hoppas att tekniken kan hjälpa till vid tidig upptäckt av förmaksflimmer eller hjärtflimmer (eng. Atrial Fibrillation, AF), den vanligaste formen av oregelbundna hjärtslag. Patienter med obehandlad förmaksflimmer har fem gånger större sannolikhet att drabbas av stroke.

Informationsfilm om förmaksflimmer 1:08

Resultat från den största förmaksflimmer-undersöknings- och detekteringstudien med över 400 000 Apple Watch-användare som var inbjudna att delta, presenterades på lördagen den 16 mars 2019 vid American College of Cardiology-mötet i New Orleans.

Av de 400 000 deltagarna fick 0,5 procent, cirka 2000 personer, meddelanden om en oregelbunden puls via appen i deras smarta klockor. Dessa personer fick sedan bära en mobil EKG-apparat (elektrokardiografi) för efterföljande detektion av förmaksflimmerepisoder.

En tredjedel av dem vars klockor upptäckte en oregelbunden puls bekräftades ha förmaksflimmer med hjälp av EKG-tekniken, sa forskarna.

84 procent av de oregelbundna hjärtpulsmeddelandena bekräftades senare ha varit hjärtflimmer-episoder, visade data.

”Läkaren kan använda informationen från studien, kombinera den med sin bedömning … och sedan styra kliniska beslut om vad man ska göra med en varning”, säger Dr. Marco Perez, en av studiens ledande utredare från Stanford School of Medicine.

Studien fann också att 57 procent av deltagarna som fick en alert på sin smarta klocka sökte läkarvård.

För företag som Apple ger den här typen av data en kraft i en ny riktning in i sjukvårdsbranschen. Apples nya smarta klocka, Apple Watch Series 4, som blev tillgänglig först efter studien började, och som alltså inte användes i den här studien, har förmågan att ta ett EKG (elektrokardiogram) för att upptäcka hjärtproblem. Den produkten krävde ett godkännande från US Food and Drug Administration (FDA).

Dr. Deepak Bhatt, en kardiolog (typ av hjärtspecialist) från Brigham and Women’s Hospital i Boston som inte var inblandad i försöken, kallade den en viktig studie, eftersom användningen av denna typ av bärbar teknik bara kommer att bli mer utbredd.
”Studien är ett viktigt första steg för att ta reda på hur kan vi använda dessa teknologier på ett sätt som bygger på bevis,” han sa.

Under de första lite drygt 2 minuterna i denna filmade intervju diskuterar Drs. Deepak Bhatt och Peter Block ”AFib detection using the Apple Watch” och beskriver det som en disruptiv teknologi som kan förändra sjukvården (Apple Heart – 00:30-02:30);

Forskare uppmanar till försiktighet av läkare att använda data från konsumentprodukter vid behandling av patienter. Men de ser också stor framtidspotential för denna typ av teknik.

”Förmaksflimmer är bara början, eftersom denna studie öppnar dörren för att ytterligare undersöka bärbar teknik och hur de kan användas för att förebygga sjukdom innan den slår ut,” säger Lloyd Minor, dekan för Stanford School of Medicine.

Uppgiftskod: AWUOHISAS-TKSVBISH

Diskussionsfrågor:

Syftet med följande diskussionsfrågor är att låta eleverna arbeta språkutvecklande med artikeln där de tränar, utvecklar och visar sina kunskaper och förmågor inom läsförståelse, att ta del av fakta, uttrycka sig i tal och skrift, argumentera, resonera, beskriva, förklara och tolka olika typer av texter. De kan även källkritiskt granska fakta och påståenden, hänvisa till olika källor, reflektera och ta ställning till egna personliga val gällande användningen av tekniska hjälpmedel för att främja vård och hälsa.
Lämpliga arbetsmetoder kan vara t ex EPA (Enskilt – Par – Alla), jobba i basgrupper eller individuellt.

  1. (TkBiSv) Vad handlar artikeln om? Sammanfatta det viktigaste.
  2. (TkBiSv) Vad är nyheten i artikeln?
  3. (TkBiSv) Är det en positiv, negativ eller neutral nyhet? Finns det flera perspektiv?
  4. (TkBiSv) Vem ligger bakom artikeln? Vem har skrivit den, vem är avsändaren, vem står som garant för faktan?
  5. (TkBiSv) Är artikeln trovärdig? Finns det några tveksamheter i artikeln? Motivera ditt svar med sakliga argument.
  6. (Sv) I vilken mån anser du att det är en argumenterande, beskrivande, förklarande, debatterande, påverkande, informerande eller problematiserande artikel?
  7. (TkBiId) Ge exempel på fler liknande produkter som kan användas för att mäta puls och hjärtrytm.
  8. (TkBiIdShSv) Vilka fördelar kan det finnas med att använda den här typen av teknik, som privatkonsument och inom vården?
  9. (TkBiIdShSv) Vilka eventuella nackdelar och risker kan det finnas med att använda den här typen av teknik, som privatkonsument och inom vården?
  10. (Tk) Har du själv, eller någon du känner, erfarenhet från att använda den här typen av teknologi?
  11. (Tk) Känner du någon person som skulle ha behov av att använda den här typen av teknologi?
  12. (TkBi) Skulle du själv kunna tänka dig att använda den här typen av teknologi för att få reda på om du har eller är på väg att få hjärtproblem?
  13. (TkBiShSyv) Vad behöver man kunna för att utveckla en sådan här produkt?
  14. (TkBiId) Vad behöver man kunna som konsument för att ha användning och nytta av en sådan här produkt?
  15. (TkBiSyv) Vad behöver vårdpersonalen kunna för att ha användning för en sådan här produkt inom sjukvården?
  16. (TkBiIdShSyv) Hur tror du att den här typen av produkter och teknologier kommer förändra vår hälsa, våra beteenden och framtidens sjukvård?
  17. (EnTkBi) Läs ursprungsartikeln på engelska och se filmklippet med intervjun 00:00-02.30. Gör en sammanfattning av vad det handlar om och översätt texten till svenska.
  18. (BiSvIdTk) Vad är puls? Var på kroppen kan man mäta puls och hur? Vad är hjärtrytm och vad innebär förmaksflimmer? Vad är stroke?
  19. (Ma) Hur många procents större risk har personer med obehandlad förmaksflimmer att drabbas av stroke?
  20. (MaSv) Hur många personer i undersökningen bekräftades ha förmaksflimmer med hjälp av EKG-tekniken?
  21. (Ma) Skapa visuella illustrationer till statistiken som presenteras i texten. T ex cirkeldiagram eller stapeldiagram.
  22. (BlTk) Skapa en annons eller ett reklamblad för en helt ny, tidigare okänd produkt, med den här teknologin och funktionen.
  23. (SvBiTk) Skriv en kritiskt argumenterande text som tar avstånd från att använda Apple Watch specifikt, eller den här typen av produkter och teknologier generellt för att detektera och förutspå sjukdomar och kartlägga vår hälsa.
  24. (TkBi) Utveckla en egen teknisk produkt, en uppfinning i form av wearable technology (bärbar teknik, kroppsnära teknik), som kan mäta din puls och hjärtrytm. (Använd gärna skolprogrammet ”Uppfinnarresan” från Finn upp)
  25. (BiSyv) Om du är intresserad av att veta mer om vad EKG är och hur man tolkar EKG kan du t ex läsa första kapitlet i kursen ”Introduktion till hjärtfysiologi och elektrokardiologi”. Webbsidan ekg.nu är en komplett e-bok och webbutbildning i klinisk EKG-diagnostik som vänder sig till läkare, sjuksköterskor, ambulanspersonal, studenter och forskare som vill lära sig EKG-tolkning. Sidan används på samtliga medicinska universitet och universitetssjukhus, så funderar du på att studera till ett vårdyrke så kan du få en inblick i vad du kommer att få lära dig.

Kopplingar till LGR 11:
Årskurs: 7-9
Ämne: Tk teknik, Sv svenska, Sh samhällskunskap, Bi biologi, En Engelska, Ma matematik, Id Idrott och Hälsa, Bl Bild, Syv Studie och Yrkes-vägledning.
Syftestext:
Centralt Innehåll:
Kunskapskrav:

Sidan uppdaterad 2019-03-18