De senaste åren har det skrivits mycket om att robotar tar människors jobb. Allt fler arbetsuppgifter ersätts av robotar, och fler står på tur i takt med att robotarna snabbt blir bättre och mer avancerade.
I robotiseringens och automatiseringens kölvatten skapas dock mängder av nya arbetstillfällen, främst inom teknikyrken som programmering, AI och mekatronik.
Här är dock ett intressant filmklipp från Japan som visar hur ett café erbjuder människor med funktionsnedsättningar arbetstillfällen som robotservitörer. Robotarna i caféet fjärrstyrs helt enkelt av människor som kan sitta eller ligga hemma och styra dem och interagera med caféets besökare. Mänsklig social interaktion och social integrering möjliggörs tack vara robotarna.
Uppgifter och diskussionsfrågor
Vad tycker du om det du såg på filmen? Hur känner du inför en utveckling där allt fler mänskligt fjärrstyrda robotar interagerar med oss i offentliga miljöer som t ex caféer eller butiker?
Ge exempel på negativa saker med mänskligt fjärrstyrda robotar som interagerar med oss i offentliga miljöer.
Ge exempel på positiva saker med mänskligt fjärrstyrda robotar som interagerar med oss i offentliga miljöer.
Tycker du att denna typ av arbetsuppgift enbart ska utföras av människor med olika typer av funktionsnedsättningar? Eller bör det vara som vilken typ av jobb som helst att alla får konkurrera om jobben på lika villkor?
Skulle du hellre vilja bli serverad av en mänskligt fjärrstyrd servitörsrobot eller en autonom robot som styrs automatiskt av artificiell intelligens eller utifrån förprogrammerade instruktioner?
Hur tycker du att en servitörsrobot ska se ut? Ska den likna roboten i filmen? Ska den likna en människa mer? Tycker du att den ska se helt annorlunda ut och kanske vara mer anpassad för att hämta och lämna brickor eller tallrikar och glas? Beskriv, skissa och sök gärna efter inspiration på Internet.
Vilka egenskaper behöver en bra servitörsrobot ha? Vad ska den kunna göra? Beskriv funktionerna och hur den rent mekaniskt ska vara uppbyggd. Vilka funktioner behöver programmeras? Vilka funktioner behöver fjärrstyras? Hur kan man lösa de olika funktionerna rent tekniskt?
Skulle du kunna tänka dig att jobba med denna typ av teknologi själv? Hur då i så fall? Som den som styr roboten, som den som programmerar den eller som den som konstruerar och designar den här typen av robotar?
Det händer mycket i Oceanhamnen i Helsingborg nu. Oceanhamnen är första etappen av stadsutvecklings-projektet H+ i Helsingborg som fram till år 2035 ska omvandla en miljon kvadratmeter gammalt hamn- och industriområde till de fyra stadsdelarna Oceanhamnen, Universitetsområdet, Husarområdet och Gåsebäck och ge plats för 10 000 nya invånare. Syftet är att skapa framtidens smarta hållbara stad och då behöver vi självklart involvera eleverna på Innovationsgymnasiet i Helsingborg!
Alla viktiga projekt behöver en flygande start! Först ut på bollen är teknikeleverna i årskurs 2 (TE18DP) som läser Design, Konstruktion, CAD och produktutveckling som, förutom att skapa 3D-ritningar med inredningsförslag till blivande bostadsrätter, kontor och hotell, även kommer bygga fysiska 3D-modeller av de nya bostäderna. Teknikeleverna i årskurs 1 (TE19) är också med i projektet och kommer jobba med fasadritningar och bygga skalenliga modeller av fastigheternas fasader inom kursen Teknik 1. TE18DP ska även designa och konstruera förslag på smarta, kompakta och mobila modulära studentbostäder av återbruksmaterial. Som en naturlig del i projektet väver vi in innovativa tekniska lösningar för smarta hem, intelligenta byggnader med lokal energiåtervinning och system för användarcentrerad feedback i syfte att minska varje individs energi- och vattenförbrukning och avfallsmängd. För de projekt och produktidéer som rör IoT (Internet Of Things) och digitala lösningar kommer våra elever (TE18IM) som läser Dator- och Nätverksteknik, Programmering, Webbutveckling och certifieringskursen Cisco IoT Fundamentals Connecting Things involveras. Genomgående för uppdragen är tillämpning av principer för hållbar design och användandet av moderna professionella digitala design- och konstruktionsverktyg som Blender, Sketchup, Fusion 360, Meshroom, Autodesk Revit, Unity, Unity Reflect samt 3D-skrivare och återbruksmaterial för att skapa skalenliga fysiska modeller. Under våren kommer natureleverna (NA19), som en del av projektet ”TIS-Tema Vatten”, titta närmare på den nya innovativa vattenreningsanläggningen Reco Lab (se mer info nedan) som är en modell för framtidens avloppssystem som håller på att byggas i Oceanhamnen.
Oceanhamnsområdet är just nu en inhägnad byggarbetsplats där förvandlingen till en levande stadsdel med de första 450 bostäder pågår för fullt så att de första invånarna kan flytta in redan nästa år. Här byggs också restauranger, handelsyta och Oceanhamnen Waterfront Business District, ett nytt affärsdistrikt med 32 000 kvadratmeter nya kontor. Området får endast besökas av behörig personal med ID06 passerkort, så vi har inte möjlighet att gå dit och göra fältstudier på nära håll med eleverna. Så för att få en inblick i hur arbetsprocesserna och bygget fortskrider får vi ta till andra kreativa metoder. I första hand söker vi samarbeten med de aktörer som är inblandade i olika delar av Oceanhamnen-projektet.
För att få lite perspektiv på projektet, fågelperspektiv alltså, så lyfte jag blicken och flög runt ett par varv och kollade in hur området ser ut idag, den 22 januari 2020. Här nedan är ett litet filmklipp med en helikoptervy över området som vi kommer ha under luppen de närmaste månaderna.
För att få en känsla för hur det är tänkt att se ut när Oceanhamnen är färdigbyggd så är en 3D-visualisering med realistisk rendering ett bra och kraftfullt verktyg. Här nedan får du en förhandstitt i 3D på den nya stadsdelen som håller på att växa fram med ett spektakulärt läge vid havet, ett stenkast från Helsingborgs centralstation. För att skapa en sådan film kan man t ex använda programvaran Blender 2.81 som vi börjat använda i kurserna Design, Konstruktion och Cad.
Digitalisering möjliggör nya innovativa arbetssätt Om man vill gå ett steg längre och erbjuda en interaktiv upplevelse så att besökaren själv kan navigera runt i 3D-miljön så kan man istället lägga in de 3D-objekt man skapat i t ex Fusion 360 eller Sketchup, i spelutvecklingsmiljön Unity, som vi använt i undervisningen i Programmering. I Unity kan man även skapa en interaktiv VR- eller AR-upplevelse. Med Unity Reflect kan man sedan koppla samman konstruktionsritningarna och projektplaneringsverktygen och följa hela byggprocessens alla olika steg i VR från en annan plats, eller med hjälp av AR-teknik se hur byggnaden steg för steg kommer att byggas upp precis där du står, trots att det ännu inte är klart. Det är som att i realtid kunna se in i framtiden, in genom väggar eller tillbaka till hur någonting såg ut innan.
Här kan du se var byggherrarna bygger
Det är totalt sex byggherrar som ska bygga bostäder i den nya stadsdelen. Vi vill gärna samarbeta med dem på olika sätt inom ramen för de kurser eleverna läser, men även för SYV (Studie- och Yrkes-Vägledning). Det kan t ex handla om studiebesök, intervjuer, designuppdrag eller praktikplatser. Kartan härunder visar var de ska bygga, och länkarna går till mer information om dem och deras projekt.
Oceanpiren är en del av Oceanhamnen, ett nytt spännande bostadsområde mitt i Helsingborg. På bästa läge, längst ut på piren, bygger vi 69 bostadsrätter om 1-4 RoK – Brf Oceanpiren. Här bor du på första parkett vid havet, i hjärtat av stadsdelen, i ljusa, välplanerade bostadsrätter som är byggda för en hållbar livsstil. Samtidigt om vi uppför Brf Oceanpiren bygger vi fyra radhus i townhouse-stil. Vi kallar dem Oceanvillorna. De har både hållbarhetstänket och den magnifika havsutsikten gemensamt med Brf Oceanpiren.
Design-, konstruktions- och CAD-uppgifter till TE18DP Här är en lista på exempel på arbeten och uppdrag som eleverna ska jobba med. Mer utförliga och detaljerande instruktioner ges under lektionerna, men de olika uppgifterna publiceras också på sidorna Designuppgifter för TE18DP och Konstruktions- och CAD-uppgifter för TE18DP.
Skapa en CAD-ritning på en av lägenheterna i Brf Oceanpiren. Utgå från planritningen.
Skapa ett komplett inredningsförslag till lägenheten.
Skapa konstruktionsritningar av väggsektioner, tak och golv i minst två olika material.
Skapa en materiallista och kostnadskalkyl för de ingående konstruktionselementen.
Gör hållfasthetsberäkningar och riskanalyser
Jämför materialalternativen med hänsyn till kostnad, hållfasthet, hållbarhet, miljöpåverkan, klimatavtryck och möjlighet till återvinning (livscykelanalys).
World Trade Center Helsingborg i Oceanhamnen ska bli mötesplatsen för entreprenörer, scale-ups, etablerade företag och affärs- och helgresenärer.
WTC Helsingborg blir en kontors- och hotellfastighet som kommer bli ett landmärke i Helsingborg. Med sina fjorton våningar precis vid hamninloppet ger den dig närkontakt med sundet, båtarna och kontinenten. Här kommer finnas gemensam service som reception och konferensavdelning. Gym, relax, dusch- och omklädningsrum. Restaurangen med uteservering vid vattnet och takterasser är ytterligare fördelar som berikar både arbets- och privatliv. I källaren planeras för cykelgarage med möjligheter till reparationer och en laddstation för elcyklar.
Fastighet är ritad av Juul Frost Arkitekter, men byggherren Midroc välkomnar kunderna tidigt in i processen för att kunna påverka lokalens utformning så att den passar verksamheten bäst. Att vara med och arbeta med förslag på lokalernas utformning kan vara ett bra elevprojekt! Juul Frost Arkitekter är förövrigt experter på design av campusområden och studentbostäder, och hur man kan integrera dem i städer.
Oceanhamnen får ett innovativt nytt avloppssystem– Reco Lab med Tre Rör Ut
Oceanhamnen kommer få en helt ny typ av klimatsmart avloppssystem med värmeåtervinning och lokalt producerad biogas. Varje fastighet ansluts till tre separata rör, ett för matavfall, ett för gråvatten och ett för svartvatten. Detta innovativa avloppssystem kräver att ingenjörerna tänker utanför boxen. I filmklippet ovan berättar VA-ingenjören Peter Winblad på Nordvästra Skånes vatten och avlopp, NSVA, om utmaningarna.
Reco Lab – en testbädd och showroom för framtidens källsorterande avloppssystem
Reco Lab kommer att bidra till att utveckla det världsunika systemet Tre Rör Ut för insamling och hantering av mat- och toalettavfall i fastigheterna på Oceanpiren i stadsdelen Oceanhamnen i centrala Helsingborg.
På uppdrag av NSVA har entreprenörföretaget NCC upphandlat det nederländska företaget Landustrie och det svenska företaget EkoBalans Fenix AB för att installera processteg i det unika Reco labs utvecklingsanläggning. Reco lab, som är en del av Öresundsverket i Helsingborg, ska behandla det källsorterade avloppet från Helsingborgs nya stadsdel, Oceanhamnen. Avloppshantering har en naturlig roll att spela i den cirkulära ekonomin då mycket av våra essentiella resurser, som vatten, näringsämnen och organiskt material passerar igenom stadens avlopp.
Det källsorterande avloppet innebär en reningsprocess med kraftigt ökad resursåtervinning. Miljövinsterna är flera:
ökad biogasproduktion
ökad näringsåtervinning
effektiv värmeåtervinning
mer energieffektiv läkemedelsrening
minskad klimatpåverkan
möjligheten för vattenåtervinning
Reco Lab planeras att vara färdigbyggt och driftsatt våren 2021 och inkluderar även ett showroom för utbildning samt en testbädd för teknikutveckling. Studiebesök hos NSVA för natureleverna (NA19) är planerat till maj 2020. Eleverna i NA18 borde också studera Reco Lab som en del av biologi- och kemikurserna, i synnerhet de som valt inriktningen mot natur och samhälle.
Bilder på bygget av Oceanhamnen
Bilder från fältstudie vid Oceanhamnen och Pixlapiren 2020-01-22 med drönaren DJI Spark:
Drönarvy | Helsingborg Oceanhamnen 2019-02-24 (Helsingborg då & nu)
Alla delar av samhället påverkas av den energiomställning som behövs för att möta klimatutmaningen. På många områden behövs ny kunskap, kompetens och nya lösningar som dessutom måste slå igenom snabbare än i dag. Energimyndigheten meddelar att vi behöver satsa mer på forskning och innovation.
Omställningen till ett mer hållbart samhälle kan inte vänta. Vi behöver agera på bred front nu! Följande sju nyckellösningar är direkt avgörande för omställningen:
Digital transformation
Elektrifiering
Energilagring
Negativa utsläpp
Cirkulära flöden
Nyckellösningar som handlar om ekonomiska och sociala hållbarhetsfrågor
och hur människors agerande kan underlättas för att nå hållbara samhällen.
Detta framgår av Energimyndighetens underlag till energiforskningspropositionen som lämnades till regeringen i slutet av 2019.
Forskning och innovation är avgörande för energiomställningen
Regeringen har satt upp tydliga mål om att Sverige ska vara ett ledande forsknings- och innovationsland. Vi ska dessutom bli världens första fossilfria välfärdssamhälle. Det är ett djärvt mål, och Energimyndigheten konstaterar att vi måste satsa mycket mer på forskning och innovation för att lyckas med den energiomställning och samhällsomställning som krävs för att nå regeringens mål.
– Vi behöver insatser som möjliggör systemlösningar inom hela energiområdet och i samhället i stort, som ökar nyttiggörandet av innovativa hållbara lösningar och som gör det enklare att som enskild individ kunna göra hållbara val på alla plan. Energiomställningen rör inte bara teknik utan lika mycket ekonomiska och sociala aspekter. Här är Energimyndighetens arbete med forskning och innovation många gånger direkt avgörande, säger Energimyndighetens generaldirektör Robert Andrén i ett pressmeddelande.
Energimyndigheten föreslår därför en kraftfull satsning på forskning och innovation med en ökning av anslaget för energiforskning från 1,57 miljarder kronor per år 2020 till 2,17 miljarder kronor per år 2024.
Satsningar på forskning och innovation behövs inom framför allt sex samhällsområden, där omställningen måste gå snabbare. Det handlar om:
Förnybar el
Bioenergi
Industri
Transport
Bebyggelse
Energisystemet i samhället.
Olika stöd kombineras för att nya lösningar ska nå ut snabbt
Energimyndigheten har helhetsansvar för energiomställningen i Sverige och använder en bred palett av verktyg. Det innebär att stöd till forskning och innovation kombineras med insatser för affärsutveckling och internationell lansering.
För att innovationer snabbare ska komma ut i samhället vill Energimyndigheten;
öka stödet till pilot och systemdemonstration av lösningar
främja innovationsprocessen från forskning till marknad
hjälpa företag att nå investerare och en global marknad.
Sverige kan inspirera världen till hållbar utveckling genom att vara en föregångare i energiomställningen. De svenska innovationerna kan bidra till global nytta genom export av produkter, tjänster och lösningar.
Här får du möjlighet att bestämma över Sveriges elproduktion. Utmaningen ligger i att ha tillräckligt med effekt när efterfrågan är som störst och att samtidigt hålla koll på miljökonsekvenserna. Du bygger – du bestämmer!
Simulatorn räknar med att tillfälliga överskott exporteras som vid behov importeras senare.
Varje megawatt (MW) elproduktionskapacitet kan bara användas av ett land åt gången. Riktigt kalla dagar skapar ofta brist också i våra grannländer så varje land behöver tillräckligt med kapacitet för att klara effekttoppar.
Räknar ni med energibesparingar?
Vi räknar med dagens elbehov. I framtiden kan behovet av el både öka och minska.
Effektivare användning av elenergi ger ökad ekonomisk konkurrenskraft vilket leder till ekonomisk tillväxt som i sin tur historiskt sett alltid gett högre efterfrågan på el.
Räknar ni med lagring av el?
Vi har inte räknat med lagring av el i nuvarande versionen av Simulatorn.
Ett energilager skapar energiförluster på motsvarande 25 procent vilket gör att mer energi behöver produceras än om ett energilager inte används.
Räknar ni med smarta elnät?
Nej, men införande av smarta elnät ändrar grundläggande inte på våra beräkningar.
Solenergi har ingen tillgänglig effekt?
Tillgänglig effekt i simulatorn beräknas vid tidpunkten då efterfrågan på el är som störst. I Sverige inträffar detta kalla dagar mellan klockan 7-8 på förmiddagen. Eftersom solen inte har gått upp vid denna tidpunkt på vintern kan solpaneler inte producera någon ström då.
Så har vi räknat
Här kommer en beskrivning av hur vi har räknat ut effekt, energi och energiöverskott.
Effekt
Effekten är ett mått på energiproduktionskapaciteten hos en elproduktionsanläggning. Effekten kan delas upp i tre delar.
Installerad effekt
Medeleffekt
Minsta tillgängliga effekt
Installerad effekt (Watt) är helt enkelt den högsta effekt som produktionsanläggningen kan producera. Medeleffekt beräknas genom att ta energiproduktionen (Wh) för en viss period (exempelvis ett år) och dela med antalet timmar för perioden (ett år är 365×24=8760 timmar).
Minsta tillgängliga effekt är den effekt som sannolikt finns tillgängligt vid tidpunkten för den högsta elförbrukningen. I Sverige inträffar den högsta elförbrukningen ungefär klockan 7 på morgonen under kalla vinterdagar.
För att beräkna tillgängligheten för olika kraftslag används Svenska Kraftnäts årliga balansrapport. Det högsta effektbehovet vid en normalvinter är 26 700 MW men vid en s.k. tioårsvinter kan effektbehovet uppgå till 27 700 MW. Tabellen nedan visar prognosen för installerad effekt vid årsskiftet 2019/20 (Svenska Kraftnät). Notera också att vi räknar bort den delen av gaskraften som ingår i störningsreserven (ca 1360 MW):
Kraftslag
Installerad effekt
Tillgänglig effekt
Tillgänglighetsgrad
Vattenkraft
16 318
13 400
82%
Kärnkraft
7 710
6 939
90%
Solkraft
745
0
0%
Vindkraft
9 648
868
11%
Gasturbiner
219
197
90%
Gasturbiner i störningsreserven
1 358
0
0%
Olje-/kolkondens
913
822
90%
Olje-/kolkondens otillgängligt för marknaden
520
0
0%
Mottryck/kraftvärme
4 622
3 536
77%
Mottryck/kraftvärme otillgängligt för marknaden
450
0
0%
Summa
40 503
25 762
–
Kolkraft och solenergi
I våra beräkningar gör vi bedömningen att kolkraft har motsvarande tillgänglighet som kärnkraft och gasturbiner nämligen 90%. För solenergi har vi valt att noll procent finns tillgängligt när effektbehovet vintertid är som störst. I Malmö går solen upp klockan 08:30 och går ner 15:37 vid midvintersolståndet den 21 december. Högst effektbehov uppstår vintertid före åtta och efter sexton då det alltså i hela Sverige fortfarande är mörkt.
Kolkraft, 90% tillgänglig effekt.
Solenergi, 0% tillgänglig effekt.
Svenska Kraftnät räknar med att det under vintern 2019/2020 finns 745 MW installerad solenergi i Sverige.
Beräkning av reglerkraft
När vi beräknar energi så startar vi först med hypotesen att alla anläggningar med låga produktionskostnader körs så mycket som möjligt. All produktion i icke-styrbara produktionsanläggningar som överstiger årsmedelproduktionen antas gå på export. Vind och sol i det nordiska elsystemet är ofta korrelerat så därför går det inte att importera just dessa kraftslag senare i obegränsad omfattning. Begränsningen till medeleffekten bedöms ändå vara generöst tilltaget.
Elbehov minus produktion utan reglerkraft minus export ger alltså behovet av reglerkraft.
Vattenkraften antas kunna användas fullt ut som reglerkraft även om det i genom vattendomar och andra fysiska begränsningar i praktiken inte är möjligt. När vattenkraften inte räcker till kan gasturbiner eller annan reglerkraft köras under begränsad tid. Reservanläggningar som vissa gasturbiner och oljekondenskraftverk beräknas köras i försumbar omfattning. Kärnkraft och kolkraft, när den finns, beräknas köras så många timmar som möjligt (ca 8 000 timmar per år).
Förenklingar
Simulatorn är tänkt att ge en känsla för begreppen installerad effekt, tillgänglig effekt och relationen till total energiproduktion. Vi tar inte hänsyn till följande saker
Överföringsförluster
Begränsningar i elnätet
Begränsningar i vattenkraftens reglerförmåga
Bara delvis tagit hänsyn till begränsningar för import/export
Dessa avgränsningar har gjorts för att göra simulatorn enkel att använda och ge största möjliga förståelse utan avkall på trovärdigheten i det större perspektivet.
Övriga produktionsslag antas ha lågt eller inget fast avfall.
Koldioxid CO2
Alla produktionsslag ger upphov till koldioxidutsläpp vid byggnation, bränsleutvinning, drift, rivning, etc. Utsläpp beräknas enligt livcykelmodellen. I första hand har vi använt Vattenfalls beräkningar och i andra hand valt andra källor. Koldioxidutsläpp i simulatorn beräknas enligt följande tabell
Källa: SMHI Vattenkraft orörda älvar, Potential totalt (TWh) 35 Nyttjande tid (h) 4000 Fördelat på fyra älvar baserat på flöden ger följande potential per älv.
Älv
Flöde (m3/s)
Procent
Energi (TWh)
Effekt (MW)
Torneälven
388
35%
12.4
5 662
Kalixälven
295
27%
9.4
4 292
Piteälven
167
15%
5.3
2 420
Vindelälven
249
23%
7.9
3 607
Summa
1 099
100%
35
15 981
Mer om elnät
Elnät används för att distribuera el från elproducenter till konsumenter. Kostnaden för elnäten beror i huvudsak på två faktorer, avstånd mellan produktion och konsumtion och hur effektivt elledningarna utnyttjas (kapacitetsfaktor).
Ett elnät med korta avstånd mellan produktion och konsumtion ger ett relativt billigare elnät jämfört med ett elnät med långa avstånd.
Långa avstånd ger också betydande överföringsförluster. En tumregel är att 6-10 procent av elen förloras per 1000 km i en 400 kilovolt högspänningsledning.
Enligt världsbanken är de genomsnittliga förluster för svenska elnätet 7 procent eller ungefär 10 TWh vilket är jämförbart med vindkraftens produktion 2013.
Ett elnät med korta avstånd och hög utnyttjandegrad per ledning är därför avgörande för att hålla kostnaderna och överföringsförlusterna så låga som möjligt.
För en vanlig elkund är elnätskostnaderna inte sällan högre än kostnaden för själva elen (elhandelskostnaden).
Trafikkaos, nedskräpning och miljöfarligt avfall. Elsparkcyklarna, eller elscooters, väcker starka känslor. Men de upprörda känslorna kring elscootrarna handlar om mer än så.
”Om ni tycker att Sverige är splittrat i synen på invandring, kan jag konstatera att det är inget mot polariseringen i hur vi ser på fenomenet elsparkcyklar.”, skrev nationalekonomen Andreas Bergh lite skämtsamt på Twitter.
Hur har det på så kort tid kunnat bli så här?
Elsparkcyklarna dök först upp i Kalifornien för ett par år sedan. Under det senaste året har företag som Voi, Lime, Tier och Bird spridit ut sina hyrfordon i en rad svenska och europeiska städer.
Det handlar om en snabb omvandling av stadsrummet. Det påverkar inte bara estetiskt hur staden ser ut och upplevs, utan också de mellanmänskliga relationerna, hur medborgare interagerar med varandra. Daniel Helldén (MP), som är trafikborgarråd i Stockholm, talar om ”en brytningstid för transporter”, och att vi kanske kommer att se ”en helt annan stad framöver”. Då är det ju inte konstigt att det här berör och upprör människor.
Men den svenska debatten om elsparkcyklarna handlar inte så mycket om denna kulturförändring. Det handlar mest om stök, säkerhet, olyckor, nedskräpning och arbetsvillkor. Om behovet av nya lagar och regler. Och om de nu är så miljövänliga egentligen, vilket de inte är.
Läs gärna följande artiklar gällande hur miljövänliga, eller rättare sagt icke miljövänliga elsparkcyklarna är:
Hur som helst, inget av detta ovan är oviktigt, tvärtom. Men känslorna de väcker kan nog handla minst lika mycket om mer diffusa ting som har med värderingar och normer att göra. I Paris, elsparkcyklarnas kanske starkaste fäste i Europa, har såväl författare som filosofer och psykologer givit sig in i diskussionerna.
Elsparkcyklarna associeras med ett slags provocerande överlägsenhet, som understryks av hur de rör sig i stadsrummet, utanför etablerade normer, ett ”fordon med alla rättigheter”, enligt den franska filosofen och psykologen Elsa Godart.
Elsparkcykelns snabba utbredning på våra gator i städer har blivit en vardaglig symbol för ”disruption”, processen där ny teknik skakar om etablerade affärsmodeller.
På samma gång rubbas föreställningar om individens ansvar. Om någon parkerar cykeln så att den blockerar trottoaren skulle ingen komma på tanken att skylla på fabrikören. Men i fallet med elsparkcyklarna finns inga individuella ägare att rikta ilskan mot. Då blir allt bolagens, tjänsteleverantörernas, fel. På samma gång känner sig många befriade från ansvar, såväl brukare som de som avskyr och rentav vandaliserar fordonen, och som stoltserar med detta på sociala medier.
Syftet med följande diskussionsfrågor är att låta eleverna arbeta språkutvecklande med innehållet i texten och de länkade svenska och engelska artiklarna och forskningsrapporten. De tränar, utvecklar och visar sina kunskaper och förmågor inom läsförståelse, att ta del av fakta, uttrycka sig i tal och skrift, argumentera, resonera, beskriva, förklara och tolka olika typer av texter. De kan även källkritiskt granska fakta och påståenden, hänvisa till olika källor, reflektera och ta ställning till egna personliga val gällande användning av transportmedel och hur de påverkar miljön, ekonomin och klimatet. Lämpliga arbetsmetoder kan vara t ex EPA (Enskilt – Par – Alla), jobba i basgrupper eller individuellt.
Vad tror du kommer hända härnäst gällande elsparkcyklarna?
Hur kommer det se ut i framtiden? Om 5 år, om 10 år?
Vilka fördelar ser du med elsparkcyklarna i städer?
Vilka nackdelar ser du med elsparkcyklarna i städer?
Vad krävs för att minska problemen men behålla fördelarna?
Hur kan en bussresa med en dieseldriven buss bidra till lägre koldioxidutsläpp än motsvarande resa med en elsparkcykel?
Gör ett diagram som visar en jämförelse mellan CO2-utsläpp för en resa från ditt hem till din skola med elsparkcykel och bil. Använd siffrorna från länkad artikel i M3 ovan.
Gör ett diagram som visar fördelningen mellan hur stor andel elscooterfärder i USA som ersätter en bilresa, en promenad, cykeltur, kollektivtrafiktur eller där personen helt enkelt hade avstått från att åka. Använd siffrorna från länkad artikel i M3 ovan.
Hur mycket längre livslängd anser du behövs för att elsparkcyklarna ska anses vara miljövänliga alternativ? Motivera ditt svar med beräkningar. Använd siffrorna från den länkade forskningsrapporten.
I många av våra dagliga beslut borde vi förlita oss mer på fakta istället för att gå på känslor, gissningar och antaganden. Problemet är ofta att vi inte orkar ta reda på saker, inte har tid eller helt inte känner till rätt formel eller inte vet hur man räknar ut det vi behöver veta. På denna sida hittar du länkar till smidiga digitala verktyg i form av webbaserade kalkylatorer som hjälper dig med olika typer av beräkningar inom alla möjliga tänkbara vardagliga eller yrkesmässiga problemområden inom fysik, elektronik, krafter och rörelser, kemi, matematik, statistik, sannolikhet, geometri, mekanik, hållfasthet, ekologi, sport m.m.
Skapa en egen robot baserat på t ex en mBot wifi, Velleman Allbot Four Legged Robot, eller Pi2Go.
Det finns många olika byggsatser att köpa om du vill bygga en egen programmerbar robot eller en robotbil. Ett chassi till ett fordon är en ram, stomme eller bottenplatta med tillhörande hjul, hjulupphängning och motorer. För att få önskad funktion på din robot behöver du komplettera chassit med motordrivkretsar, styrelektronik och strömförsörjning. Det finns en hel del att ta hänsyn till när du ska välja vilka komponenter din robot ska bestå av. Enklast är att välja något som andra redan testat, så att du vet att delarna fungerar ihop och kan hitta instruktioner för hur man bygger ihop allt.
Här nedan visar vi ett antal exempel på byggsatser med chassi, motorer och hjul samt några lite mer kompletta lösningar där även alla elektronik-komponenter medföljer. När du har ett färdigt chassi kan du designa och bygga en egen kaross eller hölje till det. Varför inte t ex göra så att det ser ut som ett djur? Du kan givetvis även konstruera och bygga ett helt eget chassi som liknar något av dessa i valfritt material (t ex trä, plast, kartong eller metall). För att spara pengar och skona miljön kanske du kan hitta och använda något lämpligt återbruksmaterial? (Skolans läromedelsbudget är ju begränsad). Du skulle kunna göra det som ett riktigt bra ämnesövergripande skolprojekt som handlar om hållbar utveckling, uppfinningar, konstruktion, design, elektronik, mekanik, ekonomi, kommunikation, samarbete, materialkunskap, verktyg och bearbetning, skisser och ritningar, 3D-CAD och 3D-printing och programmering. Inte bara för att det är väldigt lärorikt, utan även för att det är kreativt, utmanande och kul! Skolämnen som berörs är i huvudsak teknik, bild och slöjd, men även matematik, fysik, samhällskunskap, hem- och konsumentkunskap, svenska, engelska och kemi.
Här är ett antal exempel på färdiga robot-kit:
Mini Robot Rover Chassis Kit
Mini Robot Rover Chassis Kit
Kit för att bygga en egen robot med två hjul. Innehåller chassi, motorer och hjul. Komplettera med motordrivning, en Arduino eller Micro:bit och strömförsörjning. Innehåll: 2 DC-motorer (4-6 V) med hjul, stödhjul, metallchassi och topplatta för tillbehör. Mått monterad: 103x74x156 mm. Pris ca 250:- på Kjell & Co
Robotbyggsats med hjul och motor
Robotbyggsats med hjul och motor
Kit för att bygga en egen robot med två hjul. Innehåller chassi, motorer och hjul. Komplettera med motordrivning, en Arduino eller Micro:bit och strömförsörjning. Gör roboten smart med t.ex. optisk linjespårning (87064) eller avståndsmätning (87059). Chassit har hål för montering med skruv. Spänning motorer: 5 – 10 V.
En liten buggy som enkelt monteras med bara en skruvmejsel, ingen lödning krävs.
Innehåll Robo:Bit robotik-kontroller (kretskort) monteringsdetaljer (batterihållare, skruv, distanser, osv) 2 gula hjul med däck 2 motorer med anslutningskabel (ingen lödning) notera att micro:bit inte ingår!
Med den här byggsatsen kan man lära sig om att: Styra motorer med enkla fram/bak-kommandon. Styra motorernas hastighet i båda riktningarna med PWM. Med hjälp av en till micro:bit radiostyra buggyn. Använda rörelsesensorn hos micro:bit för att detektera krockar med hinder och undvika dem. Priset för detta kit är ca 480:- på Electrokit
Med en ultraljudsavståndsmätare (ingår ej) även: Upptäcka hinder när de kommer nära och undvika dem ”följa John”-program som försöker hålla ett konstant avstånd till föremål
Med en linjeföljare (ingår ej) även:
Använda linjesensorerna för att få buggyn att hålla sig i ”spåret” Skriva mer komplicerade program för när roboten stöter på korsningar av olika slag Jämföra olika strategier för att följa linjer Tillsammans med ultraljudsavståndsmätaren kan du få roboten att undvika hinder på banan och, efter att ha rundat den, upptäcka den igen.
Robo:Bit Buggy MK2 delar Robo:Bit Buggy MK2 ihopmonterad inklusive ultraljudsdetektorer
Olimex Robotplattform 3 hjul
Olimex Robotplattform 3 hjul monterad
Olimex Robotplattform 3 hjul är en robotbyggsats med chassie, motorer, hjul och batterihållare. Chassiet består av en 3mm akrylplastskiva med en mängd fästpunkter för motorer, sensorer och övrig elektronik. Byggsatsen innehåller två utväxlade DC-motorer som skruvas fast i chassiet och två hjul med gummidäck som enkelt trycks fast direkt på motoraxlarna. Utöver de två drivhjulen medföljer även en stödkula som följer rörelser i alla riktningar samt en batterihållare för 4st AA-batterier. Komplettera med valfri mikrokontroller, motordrivare samt sensorer och du har en komplett autonom robot!
Innehåll: * 1st chassie * 2st motorer * 2st hjul 65 x 25mm * 1st stödkula * 2st monteringssatser för motor * 1st batterihållare 4xAA Pris för detta kit är ca 280:- på Electrokit
Olimex Robotplattform 3 hjul delar
AlphaBot2 – Robot kit för Raspberry Pi
AlphaBot2 – Robot kit för Raspberry Pi
AlphaBot2 är en robotbyggsats gjord för Raspberry Pi Zero/Zero W, och klarar bland annat av att följa en linje, undvika föremål, mäta avstånd med ultraljud, kommunicera över Bluetooth/IR/WiFi (Bluetooth och WiFi kräver Pi Zero W) och har en inbyggd kamera som gåra att vinkla i höjdled. Monteringen är enkelt avklarad utan någon lödning eller kabeldragning; det är klart på några minuter och det finns gott om exempelkod för att komma igång snabbt.
Funktioner: * 5-kanals infraröd sensor, med analog utgång och PID-algorithm för stabil linjeföljning * Moduler för linjeföljning och för att undvika hinder, utan kabeldragning * TB6612FNG dubbel H-brygga motordrivare * N20 minimotor med metallkugghjul i växellådan. * Inbyggda RGB LEDs
På det övre kortet finns: * LM2596 spänningsregulator, levererar stabil ström (5V) till Raspberry Pi Zero * TLC1543 10 bitars AD-omvandlare, för integration med analoga givare och sensorer * PCA9685 servocontroller för jämn rörelse av kameraservot * CP2102 UART-konverterare, för att styra Pi över UART * USB HUB chip, så du kan använda fler USB-anslutningar (fyra stycken) * En summer * IR-mottagare
Mått: 220 x 165 x 70mm
Innehåll: AlphaBot2-PiZero (adapterkort) AlphaBot2-Base (chassi) RPi Camera (B) Ultraljudssensor Micro SD kort 16GB SG90 servo 2 DOF pan and tilt kit IR fjärrkontroll FC-20P kabel 8cm Micro USB-kontakt RPi Zero V1.3 Camerasladd 30cm USB-kabel typ A hane till microB hane AlphaBot2-PiZero skruvar skruvmejsel Pris ca 1200:- på Electrokit
Rover 5 Robotplattform
Rover 5 Robotplattform
Rover 5 är en robotplattform av modell stridsvagn (tank) och använder 4 individuellt oberoende motorer, var och en med en halleffekt-kvadraturkodare och växellåda. Hela växellådsaggregatet kan roteras i steg om 5 grader för olika markfrigångskonfigurationer. Du kan även byta ut robotens larvfötter mot traditionella hjul.
Funktioner:
Justerbara växellådsvinklar 4 oberoende likströmsmotorer 4 oberoende hall-effektkodare Tjocka gummitankar 6x AA batterihållare 10 kg / cm stallmoment per motor Pris ca 800:- på Elektrokit
mBot Blue/Wifi från Makeblock
mBot Blue från Makeblock
mBot Blue och mBot wifi från Makeblock är robotbyggsatser speciellt framtagna för barn och utbildning. Roboten monteras enkelt ihop, ingen lödning krävs, och programmeras i Arduino eller Scratch. En modul för 2.4GHz eller Bluetooth kommunikation medföljer och kan användas för att styra roboten trådlöst från en dator eller mobil. App för iPhone och Android finns gratis i Appstore och Google Play, sök efter namnet mBot. Det medföljer även en IR-fjärrkontroll som redan från start kan användas för att styra roboten manuellt. Med i paketet finns alla mekaniska delar som behövs för att bygga ihop roboten, styrkort, hjul och motorer, ultraljudssensor, linjeföljarsensor, kablar, batterihållare, fjärrkontroll samt skruvmejslar.
mBot är en komplett lösning för elever som vill lära sig mer om programmering, elektronik och robotar. Att arbeta med mBlock, inspirerad av Scratch 2.0 och kontrollerad av en Bluetooth-modul ger detta robotkit elever en oändlig massa möjligheter att lära sig vetenskap, teknologi, ingenjörskunskap och matematk.
Dra och släpp grafiskt programmeringsmjukvara som baseras på Scratch 2.0 ger barnen ett snabbt sätt att lära sig programmering, att kontrollera roboten, och att möjliggöra multipla funktioner från roboten. mBot bygger på lek och kreativitet.
Den mekaniska aluminiumkroppen av mBot är kompatibel med Makeblock plattformen och många Legodelar, medan elektroniken är utvecklad med Arduinos open source ekosystem. Detta gör att mBot har en nästan oändlig utökningsmöjlighet genom att använda många olika elektroniska moduler som du kan behöva för att bygga din ”drömrobot”.
• Mjukvara och programmering: mBlock (Grafisk) för Mac och Windows, iPad mBlocky, Arduino IDE • Microcontroller: Baserad på Arduino Uno • Strömförsörjning: 3,7V DC Lithium batteri eller fyra 1,5V AA batterier (säljes separat) • Trådlös kommunikation: Bluetooth eller 2,4 GHz wifi
I paketet ingår:2x Micro TT motor 1x Universal hjul 1x Me Ultraljud sensor 1x mCore 15x M4 x8 skruvar 1xME Line follower 2x Tyre 90T B 8x M3 muttrar 2x Velcro 4x M2.2 x 9.5 skruvar 1x Line follower map 4x M2 x 25 2x 6P6C RJ25-kablar 0,2m 1x IR fjärrkontroll (Knappcellsbatteri CR2025, medföljer ej) 1x Chassi 1x USB Typ A – Typ B kabel 1m 1x Batterihållare för 4 AA-batterier (batterier medföljer ej) 1x skruvmejsel 1x Skyddslock Mått(BxDxH): 170x130x90mm Längd 17 cm Fyra AA batterier köps separat 1 st knappcellsbatteri CR2025 köps separat Priser från ca 900:- beroende på modell och kan köpas från t ex Hands On Science
mBot Blue och mBot wifi kan programmeras med ScratchmBot Blue från Makeblock i delarmBot Wifi monteras enkelt ihop till en komplett fungerande robotmBot Blue kan styrs från en mobiltelefon
mBot Ranger Robot kit från Makeblock
mBot Ranger Robot Kit från Makeblock
mbot Ranger Robot Kit är ett 3-i-1 robotkit som stöder tre byggutföranden: Off-Road Land Raider, två-hjulig självbalanserande bil och Dashing Raptor, Predator.
Programmera och kontrollera mbot Ranger via smartphone, surfplatta, Mac eller PC. Trådlös komunikation via Bluetooth och WiFi 2,4G.
mBot Ranger är fullt kompatibel med mBlock som är en grafisk programmeringsmiljö baserad på Scratch 2.0 open-source kod. Den gör programmeringsprojekt och interaktiva projekt enklare genom drag-and-drop funktionsblock. Utöver stöd för programmering via en PC har mBot Ranger även stöd för att bli programmerad från en iPad och andra surfplattor med en enkelanvänd app: Makeblock HD.
Programmering: PC – mBlock iPad/Tablet – Makeblock Arduino IDE
Bil med kraftöverföring via remdrift i serien Bilar och kraftöverföring.
Byggsatsen innehåller chassi av korrugerad plast, hjul, axlar och axelbockar med monteringskuddar, 2 remskivor, gummiband, elmotor, batterihållare och omkopplare.
Storlek 20x14cm. Batteri 2 st AA beställs separat. Pris ca 80:- på Hands On Science
Enkla byggsatser där ni jämför effekten av olika kraftöverföringar från energikälla till rörelseenergi. Här är utväxling gjord med remskivor av olika diameter.
Remdrivning i fordon finns i lite olika varianter. I riktiga personbilar används det mest till att driva generatorn, vattenpumpen, AC-kompressorn, kylarfläkten eller servostyrningspumpen från bilens förbränningsmotor. Det finns dock några klassiska gamla exempel på bilar som hade remdrivning som kraftöverföring för att driva hjulen som t ex Daf/Volvo 343, även kallad Remjohan. Vissa veteranmopeder hade kraftöverföring med en rem för länge sedan, men sedan blev det i princip standard med kedja på både mopeder och motorcyklar. Idag har remdrift blivit vanligare igen på Scooter-mopeder bl a pga ryckfri och behaglig gång samt möjlighet att justera utväxlingen dynamiskt i den automatiska växellådan mha en variator. Andra remdrivna produkter är kvarnar, luftkompressorer och kapsågar.
Bilchassi med kugghjulsdrift
Bilchassi med kugghjulsdrift som kraftöverföring
Byggsatsen innehåller chassi av korrugerad plast, hjul, axlar och axelbockar med monteringskuddar, 2 kugghjul, elmotor, batterihållare och omkopplare.
Storlek 20x14cm. Batteri 2 st AA beställs separat. Pris ca 80:- på Hands On Science
Enkla byggsatser där ni jämför effekten av olika kraftöverföringar från energikälla till rörelseenergi. Mellan drivkälla och hjul finns i allmänhet en växellåda med flera kugghjul.
Kugghjulsdrivna fordon är våra vanliga standardbilar, lastbilar och mopeder, cyklar traktorer samt även i borrmaskiner.
En länk till en artikel om den blodiga jakten på mineraler i Kongo-Kinshasa. Ett reportage om Kobolt, den viktiga dyrbara mineralen i Litiumjon-batterierna som driver allt från mobiltelefoner, bärbara datorer och elbilar. Enligt Aftonbladets reportrar som granskat Kobolt-industrin i Kongo så förekommer det både barnarbete och allvarliga missförhållanden i gruvorna. Vilket ansvar tar de stora teknikföretagen? Många är de som köper upp och använder Kobolt i sina produkter. Företaget Northvolt, som ska bygga Europas största batterifabrik i Skellefteå. Och Volvo, som från 2019 ska bygga in elmotorer i alla sina nya modeller. Och Tesla, världens största tillverkare av elbilar och elbilsbatterier. Och elektronikkedjorna som i reklamen lockar med sina senaste telefoner och surfplattor från tillverkare som Apple och Samsung.