Kategori: åk7-9
Introduktion till Python
Denna tutorial går igenom grunderna för Python på svenska.
Scrimba-plattformen kör dels filmade instruktioner men med möjlighet för dig att pausa filmen och koda själv.
Skapa 3D CAD-ritning i Fusion 360 från 2D-ritningar
Om du vill skapa en 3D CAD-ritning i Fusion 360 av ett objekt som du redan har en 2D-ritning i flera vyer av, så kan du infoga ritningsvyerna som bildobjekt på respektive plan (horisontell och vertikal i det som kallas TOP, FRONT, RIGHT och LEFT). Ritningsvyn framifrån lägger du in på FRONT, ritningsvyn ovanifrån lägger du in på TOP och ritningsvyerna från sidorna lägger du in på respektive sida. Skapa en ny Sketch för varje vy.
Du väljer verktyget Insert –> Canvas, och väljer sedan vilken bild du vill använda till det plan du valt för aktuell Sketch.
Kalibrera bilden mot din canvas så att ett visst mått på ritningen (bilden) motsvarar samma dimension i CAD-ritningen.
Du högerklickar på bilden under Canvas och väljer Calibrate.
I följande filmklipp visar Lars Christensen hur man man kan modellera upp ett 3D-objekt i Fusion 360 från 2D-ritningar i flera vyer från ett pdf-dokument.
Robotar som ger människor jobb
De senaste åren har det skrivits mycket om att robotar tar människors jobb. Allt fler arbetsuppgifter ersätts av robotar, och fler står på tur i takt med att robotarna snabbt blir bättre och mer avancerade.
I robotiseringens och automatiseringens kölvatten skapas dock mängder av nya arbetstillfällen, främst inom teknikyrken som programmering, AI och mekatronik.
Här är dock ett intressant filmklipp från Japan som visar hur ett café erbjuder människor med funktionsnedsättningar arbetstillfällen som robotservitörer. Robotarna i caféet fjärrstyrs helt enkelt av människor som kan sitta eller ligga hemma och styra dem och interagera med caféets besökare. Mänsklig social interaktion och social integrering möjliggörs tack vara robotarna.
Uppgifter och diskussionsfrågor
- Vad tycker du om det du såg på filmen? Hur känner du inför en utveckling där allt fler mänskligt fjärrstyrda robotar interagerar med oss i offentliga miljöer som t ex caféer eller butiker?
- Ge exempel på negativa saker med mänskligt fjärrstyrda robotar som interagerar med oss i offentliga miljöer.
- Ge exempel på positiva saker med mänskligt fjärrstyrda robotar som interagerar med oss i offentliga miljöer.
- Tycker du att denna typ av arbetsuppgift enbart ska utföras av människor med olika typer av funktionsnedsättningar? Eller bör det vara som vilken typ av jobb som helst att alla får konkurrera om jobben på lika villkor?
- Skulle du hellre vilja bli serverad av en mänskligt fjärrstyrd servitörsrobot eller en autonom robot som styrs automatiskt av artificiell intelligens eller utifrån förprogrammerade instruktioner?
- Hur tycker du att en servitörsrobot ska se ut? Ska den likna roboten i filmen? Ska den likna en människa mer? Tycker du att den ska se helt annorlunda ut och kanske vara mer anpassad för att hämta och lämna brickor eller tallrikar och glas? Beskriv, skissa och sök gärna efter inspiration på Internet.
- Vilka egenskaper behöver en bra servitörsrobot ha? Vad ska den kunna göra? Beskriv funktionerna och hur den rent mekaniskt ska vara uppbyggd. Vilka funktioner behöver programmeras? Vilka funktioner behöver fjärrstyras? Hur kan man lösa de olika funktionerna rent tekniskt?
- Skulle du kunna tänka dig att jobba med denna typ av teknologi själv? Hur då i så fall? Som den som styr roboten, som den som programmerar den eller som den som konstruerar och designar den här typen av robotar?
Allt fler vill bygga hus i trä
Ökad efterfrågan på byggnader av trä
Att bygga bostäder och andra hus i trä har blir allt populärare och flerbostadsbyggandet i trä har växt kraftigt sedan 2015. Under 2017 växte det med 29 %. Enligt TMF:s senaste statistik levererades under första halvåret 2019 totalt 2 199 lägenheter med stomme av trä, en ökning med 18 procent jämfört med samma period 2018. Orderingången under första halvåret 2019 var 2 935 lägenheter, en ökning med 39 procent jämfört med första halvåret 2018. Statistiken kommer från Trähusbarometern från TMF (Trä- och Möbelföretagen).
Korslimmat trä banar väg för höga trähus – ”Alla pratar trä”
Artikel i Ny teknik 2020-01-28
I Skellefteå bygger staden ett trähus med 20 våningar i korslimmat trä. Det är ett svenskt exempel på trenden att bygga riktigt högt med träkonstruktioner.
Nu har Norge världens högsta trähus
Världens högsta trähus finns i Norge. I september 2018 lades den sista balken på Mjøstårnet som då mätte 85,4 meter.
Läs mer här –>
Norden satsar mer på träbyggande
De nordiska länderna ska satsa mer på träbyggande. Det är en av punkterna i den gemensamma klimatdeklaration som undertecknats av nordiska ministrar.
Läs mer i artikeln från 5 februari 2019 –>
Betongstaden Skövde blir trästad
Skövde har nyligen byggt kanske Europas största sammanhängande bostadsområde med flervåningshus i trä. När bostadsområdet Frostaliden är klart 2020 kommer det att finnas 369 lägenheter i de höga husen. Det är fyra olika bolag som bygger området. Förutsättningen för att få vara med och forma det nya bostadsområdet var att man byggde klimatsmarta hus med trästomme.
Läs mer i artikeln från 15 december 2018 –>
Ett helt kvarter i trä när Stockholm växer
Ett kvarter i trä ingår i det vinnande förslaget när Årstafältet i Stockholm ska bli nytt bostadsområdet. Projektet kan bli ett ”skyltfönster för träbyggandets snabba utveckling”, hoppas arkitekten.
Arkitektfirman White har tillsammans med byggherrarna Nordfeldt och Lindbäcks vunnit Stockholms stads markanvisningstävling för Årstafältet i Stockholm. I deras förslag Symbios finns 180 bostäder i trähus.
”Trä är framtidens smartaste byggmaterial. Genom att kombinera det med särpräglad arkitektur kan vi nu skapa ett bostadsområde där människor, djur och insekter lever och möts i en modern stadsmiljö med känslan av ”mitt i naturen”. Detta är ett stort steg ur många aspekter”, säger ansvarig arkitekt Jan Larsson i ett pressmeddelande.
I husen som White ritat används trä i stomme, tak, bjälklag, fasader och balkonger. Betong används i bland annat garage och källarplan.
Artikel om fuktsäkert byggande vid massivträhus.
I Valla Berså Linköping förverkligar Peter Lindstén sina ambitioner att bygga ett lågenergihus med massivträstomme i fem våningar. I denna artikel vill jag visa goda exempel på hur en konstruktion med massivträ kan byggas kostnadseffektivt och fuktsäkert. I och med denna byggnation, Valla Berså, har man skapat ett unikt hus där byggaren med lite inlärningsproblem lärt sig hantera byggande i massivträ på ett imponerande sätt. Läs hela artikeln här –>
Smartare löparskor med inbyggda sensorer och IoT
Uppkopplade sensorer, s k Internet Of Things (IoT) blir allt vanligare och ger gamla traditionella produkter helt nya funktioner och möjligheter. Även kläder har på senare år klivit in i segmentet av högteknologiska produkter i och med modebranschens transformation mot fashiontech. I detta inlägg ska vi titta närmare på hur en löparsko som försetts med inbyggda sensorer och trådlös uppkoppling till mobiltelefon kan förändra användarupplevelsen och tillsammans med en tillhörande mobilapp kan ge realtidsfeedback och coacha dig så att du lär dig springa effektivare och bättre.
Altras designfilosofi skiljer sig lite ifrån andra traditionella skotillverkare. Du kan läsa mer på sidan Varför Altra. För den här modellen har de valt att implementera den nya tekniken i en skomodell som även går att köpa utan tekniken.
Se uppgifter och diskussionsfrågor längst ner på denna sida.
Altra Torin IQ
En intelligent löpsko och din nya löpcoach
Altra IQ Torin är en intelligent löpsko som coachar och ger feedback med hjälp av steganalys. Skon är utrustad med IoT-teknologin som kommunicerar med träningsklockan eller telefonapplikationen från iFit. Du får live feedback och löptips rakt I din klocka eller telefon medan du rör på dig. Skon mäter kollisionskrafter i sulans olika delar vilket hjälper att hitta en mer balanserad löpning. Du får information om sulans träffpunkt med marken vilket ger möjligheten att följa hur löpsteget ändras under loppet. Idén är att främja ett effektivt och hälsosamt löpsteg. Skon mäter också stegfrekvens som är en indikation på löpformen och hjälper till med att upprätthålla en önskad stegrytm i löpningen.
Teknologi
Högteknologisk löparsko som synkroniserar med iFit®-klockor, Android eller Apple. Ingen nivåskillnad tå-häl, snabbtorkande mesh i ovandelen och bekväm dämpning.
• Applikation till iphone, Android, Google play
• Trådlös kommunikation till skosensorn
• Dolda sensorer inbäddade i mellansulan
• Registrering av landningszon
• Trycksensorer i sulans olika delar
• Löptips under löpningen från appen
• Realtids löpdata via IQ applikationen och analys
• Du kan även följa med tid, distans och hastighet
Altra IQ är den första högteknologiska löparskon som mäter stegfrekvens, tryckbelastning och löparstil. Perfekt för den som vill analysera sin löpning.
Under innersulan sitter en trycksensor som synkroniserar trådlöst med iFit®-klockor, Android eller Apple. Den här sensorn ger dig feedback i realtid under löprundan, antingen på displayen eller genom ljudsignaler. Detta hjälper löparen att förbättra sin löpstil, fotisättning och frekvens under löprundan.
Ovandel i slitstark, snabbtorkande Airmesh som både ger ökad ventilering och komfort. FootShape™ tåbox ger tårna extra plats att sprida ut sig för bättre komfort, stabilitet och hastighet.
Mellansulan är lätt dämpad med A-Bound™ som ger energirespons i varje steg och en heldämpad Zero Drop-plattform ger stötdämpning och en mer naturlig löprörelse. InnerFlex™ gör skon mer flexibel i mellansulan.
Specifikationer:
– Ovandel: Snabbtorkande mesh
– Innersula: 6 mm Contour
– Mellansula: Dual Layer EVA med A-Bound™ Top Layer & InnerFlex™
– Plattform: Natural Foot Positioning: FootShape™ Toe Box med heldämpad Zero Drop™ Platform
– Yttersula: FootPod
– Vikt herr: 230 g
– Vikt dam: 184 g
– Sulans höjd: 24 mm
– Nivåskillnad tå-häl: 0 mm
Teknologi:
– Trådlös kommunikation
– Mätning av fotisättning
– Trycksensor
– Löptips genom ljudsignaler längs vägen
– Statistikregistrering
– Spårning av loppet i efterhand
Användare: Herr eller Dam (olika skomodeller)
- Löpunderlag: Asfalt
- Pronation: Neutral
- Stabilitet: ¡
- Löpkänsla: ¡
- Underlag: Asfalt
- Stabilitet: Neutral
- Dubbar: Nej
- Drop: 0 mm
- Vattentät: Nej
- Ovandel: Fast Drying Mesh, FootShape
- Mellansula: Dual Layer EVA with A-Bound, Top Layer & Innerflex
- Dämpning: Full Cushioning Zero Drop Platform
- Yttersula: Footpod
Lite mer information om Altra Torin IQ, tankarna bakom designen och beskrivning av funktionerna hittar du i följande engelska text från en artikel med en intervju av grundarna av Altra:
”For too long, the two main metrics to measure your run have been ’how far?’ and ’how fast?'” said Altra president and co-founder Brian Beckstead. ”With Altra Torin IQ shoes, you get a much richer picture of your run with real-time coaching. We analyze the problems in real time, and provide you with proactive suggestions so you can correct and improve right away. Running has never been smarter.”
Altra Torin IQ powered by iFit is the first and only shoe on the market to feature full-length, razor-thin, featherweight sensors and transmitters embedded in the midsole of each shoe — providing runners with live data for each foot individually. Using Bluetooth technology, the shoe communicates directly with the Altra IQ iFit app on the runner’s smartphone to continuously transmit data in four key areas: landing zone, impact rate, contact time and cadence. The app also tracks pace, distance and time.
During the run, Altra Torin IQ serves as a stride coach, relaying real-time feedback in two ways: through the app screen and audible coaching. Runners have the ability to customize how often to receive live coaching based on their preferences.
”Many running injuries can be prevented by learning efficient, low-impact running form. However, it can be really hard to analyze running form on yourself,” said Altra founder Golden Harper. ”This shoe is designed to help make runners more efficient and to extend the running career of road and trail warriors out there. Intelligence is power, and Altra Torin IQ can provide insights like nothing else.”
”The coolest thing to me is that we are able to give runners coaching tips in their moments of greatest need,” Harper continued. ”For example, as a runner’s form starts to slip near the end of a race, the IQ shoe will recognize that and give them coaching tips to get them back on the right track.”
Both Harper and Beckstead agree the Altra Torin IQ shoe is an excellent training tool for a range of runners, from beginners who want to avoid bad habits, to elites who want to fine tune their form.
Altra Elite Athlete Zach Bitter has logged hundreds of miles testing Altra Torin IQ, including training for his American record 100-mile time of 11:40:55, set at the 2015 Desert Solstice Invitational. Bitter logs 120 to 140-mile weeks during training. His next major race is the legendary Western States Endurance Run in July in California.
”The beauty of the Altra IQ technology is its variety of uses. It’s quick and accurate workout feedback can be applied right on the spot, with coaching tips that help correct problems rather than just telling you that you’re doing something wrong,” Bitter said. ”As a high-mileage runner, I think one of the coolest aspects is the information I learn about how my stride is affected over distance, through injury, sore muscles and such,” Bitter said. ”Many variables affect your training, so having baseline data of what you typically do while healthy and being able to spot-check that during a race is invaluable.”
Altra IQ powered by iFit app specs:
Landing Zone:
Landing zone helps runners avoid extremes such as landing with a harsh heel strike or too far forward on the toes. The Altra IQ app reports landing zone feedback with audio tips, as well as visual feedback on the app screen to give runners a clear idea of where each foot is hitting the ground.
”Our goal is not to change a runner’s foot strike, but instead to provide them with the tools to understand a proper foot strike is the result of having proud posture, compact arms and a high cadence — all the things we’ve been teaching in our Run Better clinics since Altra was founded,” Harper said.
Therefore, live coaching tips included in the Altra IQ app guide runners to make changes to their posture, arms, or cadence that lead to a low-impact landing. For example, if the runner is over-striding, or landing on their toes, they’ll receive an audio coaching tip that will help correct and optimize their landing.
”We’re hoping to guide runners into a ’safe zone.’ As each runner is different, their individual landing zone may vary between a soft heel landing and a slight forefoot landing,” Harper said. ”In general, the goal is to avoid the extremes of landing as a means of reducing injury and stress on the body.”
Impact Rate:
Altra Torin IQ’s dual sensors monitor how hard each foot hits the ground and identifies left–right imbalances in their stride, for a metric Altra calls ”impact rate.” Coaching guidance from the app helps runners land more softly and achieve more balance, which may lead to a lower likelihood of injury. Altra IQ reports impact rate in two ways: a number expressed in millig-units (mG) and as a visual on the app screen showing how balanced the runner is.
”The practical application of impact rate will be during a run or race where pace is generally constant,” said Harper. ”As a runner loses form, their impact rate may increase. Therefore, monitoring impact rate during a run or race is an excellent way to ensure efficient form. As an example, an individual running at a constant pace with poor form will have a higher impact rate number than they would at the same pace with efficient form.”
Harper added, ”As runners increase speed, impact rate will naturally increase, even when running with efficient technique. The goal is for runners to maintain a consistent impact rate number while running at a given pace.”
Contact Time:
Running performance is contingent on many variables, and ground contact time is one of the lesser known. Altra IQ contact time data shows runners how much time each foot is in contact with the ground and is reported as a number of milliseconds (ms), with a separate score for each foot. With this data, runners can improve left-right balance and optimize contact time.
”Lower contact times are often associated with a higher cadence and more efficient, lower impact foot strikes,” Harper said. ”Additionally, a left-right imbalance may serve as a clue revealing a current, past, or forthcoming injury.”
Cadence:
Cadence is the live ”pulse” of a run and a key factor in form, foot strike and efficiency. Altra Torin IQ’s live cadence tracking provides data to keep foot turnover at the optimal rate for the current running pace, helping runners become more fluid. Altra IQ powered by iFit reports cadence as a number of total steps per minute. In general, working up to a higher cadence in the 170 to 180 range improves running form and efficiency.
Uppgifter och diskussionsfrågor
- Har du sett någon liknande produkt med motsvarande funktionalitet tidigare? Vilken i så fall?
- Vilka liknande produkter med motsvarande funktionalitet hittar du nu om du Googlar?
- Ge exempel hur de liknar varandra och vad som eventuellt skiljer dem åt.
- Vilka komponenter behövs för att göra en vanlig löparsko till en smart sko med samma funktioner som Altra Torin IQ?
- Vilka yrkeskategorier och vilken kompetens behövs för att designa och konstruera en smart sko som Altra Torin IQ?
- Ge exempel på några andra produkter som inte är ”smarta skor” men som har liknande funktionalitet eller kan ge motsvarande information om din löpning.
- Om du skulle designa och konstruera en smart löparsko idag, vilka funktioner skulle du då satsa på?
- När Altra Torin IQ lanserades år 2017 var de först i världen. Hur vanligt tror du att det kommer vara med smarta uppkopplade löparskor år 2025?
- Hur innovativ anser du att Altra Torin IQ var som produkt när den lanserades 2017 (1-5, där 1 = inte innovativ alls, 2 = lite innovativ, 3 = ganska innovativ, 4 = innovativ, 5 = mycket innovativ)?
Konstruktionsexempel för väggar av trä
En byggnad består av olika typer av väggar som konstrueras och byggs på lite olika sätt beroende på deras funktion och de krav vi ställer. Väggar kan byggas av olika material eller av en kombination av material. På denna sida kommer vi titta på några vanligt förekommande väggtyper av trä.
(källa: https://www.traguiden.se/konstruktion/konstruktionsexempel/vaggar/ )
- Yttervägg – generella detaljlösningar
- Bärande yttervägg
- Fasadsystem i skivmaterial
- Industriyttervägg
- Icke bärande yttervägg
- Fönster i ytterväggar
- Bärande innervägg
- Icke bärande innervägg
- Lägenhetsskiljande vägg
- Våtrumsvägg
Yttervägg – generella lösningar
Ytterväggen ingår vanligen i byggnadens stomme. Den byggs oftast upp med regelverk såväl när det gäller bärande som icke bärande ytterväggar. Även korslimmat trä, KL-trä förekommer som stommaterial, särskilt i flervånings trähus.
Yttervägg med liggande panel
Ingående material
- Liggande panel.
- Spikläkt.
- Luftspalt/kapillärbrytande spalt.
- Vindskydd.
- Yttre isolerskikt fäst med distanshylsor.
- Vertikal väggregel.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallat installationsskikt.
- Invändig väggbeklädnad.
Material
Spikläkt: läkt 34×45 mm, sort G4-3 eller bättre..
Vertikal och horisontell väggregel: konstruktionsvirke 45 mm.
Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull.
Ångspärr: åldringsbeständig plastfolie.
Invändig beklädnad: beklädnadsskivor eller träpanel.
Alternativ 1:
Liggande profilerad panel av trä utomhus: tjocklek ≥ 22 mm, bredd <113 mm (täckande bredd). Fästdon: varmförzinkad trådspik 75-2,8 för bräder < 32 mm, varmfözinkad trådspik 100-3,4 för bräder ≥ 32 mm.
Alternativ 2:
Liggande panel av trä på förvandring utomhus: tjocklek ≥ 22 mm, bredd <175 mm. Fästdon: varmförzinkad trådspik 100-3,4.
Utförande
Spikläkt monteras med varmförzinkad trådspik 100-3,4 i stående väggregel.
Liggande profilerad panel av trä monteras med en spik 30 mm från brädans underkant och med spikavstånd 600 mm.
Liggande panel på förvandring monteras med en spik 25 mm från underkant. Spikavståndet bör vara ≤ 600 mm. Spiken ska inte gå igenom den bakomliggande brädan. Spikarna bör vara så långa att de tränger in minst cirka 34 mm i läkt eller spikreglar.
Om lättreglar eller lättbalkar används i ytterväggens bärande konstruktion, bör den vertikala spikläkten ha sådan tjocklek att ytterpanelens spikar huvudsakligen fäster i spikläkten och inte riskerar att spjälka lättbalken eller lättregeln. Varmförzinkad spik bör användas dels för att ge en lång livslängd, dels för att inte förorsaka rostgenomslag i ytbehandlingen. Ytterpanel som ska täckmålas eller laseras ska vara grundad före uppsättning.
Bottenbräda ska målas innan lockbräda eller lockläkt monteras. I annat fall finns stor risk för att omålade partier framträder när virket krymper. Av samma anledning bör heltäckande panel, till exempel spontad eller diagonalställd panel, grundas före uppsättningen.
Yttervägg med stående panel
Ingående material
- Lockbräda/lockläkt.
- Bottenbräda.
- Luftspalt/kapillärbrytande spalt.
- Spikläkt.
- Vindskydd av oorganiskt material.
- Yttre isolerskikt fäst med distanshylsor.
- Vertikal väggregel.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallat installationsskikt.
- Invändig väggbeklädnad.
Material
Spikläkt: 34×70 mm G4-3 eller bättre med lutande översida.
Vertikal och horisontell väggregel: konstruktionsvirke 45 mm.
Vindskydd: skivmaterial utvändigt godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull.
Ångspärr: åldringsbeständig plastfolie.
Invändig beklädnad: beklädnadsskivor eller träpanel.
Alternativ 1:
Stående panel av trä med lockläkt: tjocklek bottenbräda ≥ 22 mm, bredd ≤ 175 mm. Lockläktens dimension bestäms bland annat med hänsyn till utseendet.
Fästdon: varmförzinkad trådspik 75-2,8, alternativt panelskruv längd 48-60 mm, till bottenbräder <25 mm, varmförzinkad trådspik 100-3,4, alternativt panelskruv längd 75-90 mm, till bräder ≥ 25 mm samt till lockbräder och lockläkt.
Alternativ 2:
Stående panel av trä med lockbräder: tjocklek bottenbräda ≥ 19 mm, bredd ≥ 50 mm; tjocklek lockbräda ≥ 22 mm, bredd ≤ 150 mm.
Fästdon: varmförzinkad trådspik 75-2,8, alternativt panelskruv längd 48-60 mm, för bottenbräder <25 mm, varmförzinkad trådspik 100-3,4, alternativt panelskruv längd 75-90 mm, för bottenbräder ≥ 25 mm och för lockbräder.
Alternativ 3:
Spontad eller falsad panel, stående eller diagonalställd: tjocklek ≥ 22 mm, bredd ≤ 150 mm. Fästdon: varmförzinkad trådspik 75-2,8, alternativt panelskruv längd 48-60 mm.
Utförande
Bottenbräder spikas med en spik centriskt. Spikavståndet bör vara ≤ 1 200 mm. Lockbräder i lockpanel ska sättas upp med minst 20 mm överlapp på vardera av de två underliggande bräderna. Bräderna dubbelspikas/skruvas utan att spikarna går igenom bottenbräderna. Spikavståndet bör vara ≤ 600 mm. Lockläkt ska spikas/skruvas centriskt med centrumavstånd ≤ 600 mm.
Spontad eller falsad panel med bredd ≤ 113 mm ska spikas/skruvas dolt med varmförzinkad 75-2,8 trådspik, alternativt panelskruv 48-60 mm. Bredare bräder än 113 mm dubbelspikas. Diagonalställd panel spikas mot vertikal spikläkt.
Spik i yttervägg bör vara varmförzinkad för att ge lång livslängd och för att inte förorsaka rostgenomslag genom ytbehandlingen. Spikarna bör vara så långa att de tränger in minst 34 mm i spikläkt eller spikregel.
Mellan spikläkten och vindskyddet ska fästas vertikal luftningsläkt eller distansplattor av till exempel 8 mm board för att säkra luftningen och hindra vatten på spikläktens ovansida att tränga in i och skada väggkonstruktionen. Detta är särskilt viktigt vid lockläkts- och spontad panel. I lockpanelen anses luftningen kunna tillgodoses genom själva konstruktionen med panel och spikläkt. I det fall särskild läkt eller distansstycken används bakom spikläkten bör spikläktens tjocklek vid platsbyggda ytterväggar uppgå till minst 34 mm för att läkten ska kunna spänna fritt.
Ytterpanel som ska täckmålas eller laseras ska vara grundad före uppsättning. Bottenbräda ska målas innan lockbräda eller lockläkt monteras. I annat fall finns stor risk för att omålade partier framträder när virket krymper. Av samma anledning bör heltäckande panel, till exempel spontad eller diagonalställd panel, grundas före uppsättningen.
Brädändar ska dubbelspikas med ett spikavstånd av 100-150 mm från änden. Det är lämpligt att förborra spikhålen, alternativt använda självborrande panelskruv, vid brädändarna för att minska risken för sprickor. Stående panel bör i största utsträckning utföras så att skarvning undviks. Stumskarvar bör undvikas.
Skarvar kan lämpligen utföras med längsgående plåtbeslag som skyddar underliggande fria brädände.
Bärande yttervägg av konstruktionsvirke eller lättreglar – principlösning
Ingående material
- Väggreglar av konstruktionsvirke, centrumavstånd ≤ 600 mm.
- Ångspärr av åldersbeständig plastfolie.
- Horisontell väggregel, så kallat installationsskikt.
- Invändig beklädnad av skivmaterial.
- Vindskydd av diffusionsöppet material, till exempel vindskyddsduk eller cementbaserad skiva.
- Utvändig beklädnad av träpanel.
- Luftspalt, ventilerande och kapillärbrytande.
- Spikläkt av konstruktionsvirke med underliggande vertikal distans/luftning.
- Övre syll av konstruktionsvirke ≥ 45 mm.
- Nedre syll av konstruktionsvirke ≥ 45 mm.
- Värmeisolering med mineralullsskivor.
- Kantbalk, längsgående balk, av konstruktionsvirke. Samma dimension som golvbalkarna.
- Kortling av konstruktionsvirke 45×45 mm, G4-2 eller bättre.
Tekniska data
Vägg med stomme av träreglar med minsta tvärsnitt 45×120 mm, centrumavstånd ≤ 600 mm och med minst 120 mm mineralullsisolering, på båda sidor försedd med minst 13 mm beklädnadsskiva med densitet ≥ 450 kg/m3, uppfyller brandteknisk klass REI 30.
Råd och anvisningar
Trävirke ska vid inbyggnad ha en ytfuktkvot av högst 18 %. Spik, skruv och byggbeslag ska vara av varmförzinkat stål eller ha motsvarande korrosionsskydd.
Bärande yttervägg av konstruktionsvirke eller lättreglar med anslutning mot grundmur
Ingående material
- Lockbräda/lockläkt.
- Bottenbräda.
- Luftspalt/kapillärbrytande spalt.
- Spikläkt med underliggande vertikal distans/luftning.
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Vindskydd av oorganiskt material .
- Övre syll.
- Syll.
- Syllisolering.
- Vertikal regel.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
- Kortling.
- Ångspärr kläms.
- Grundmur.
Material
Väggreglar: vertikala reglar av konstruktionsvirke 45×145 mm, centrumavstånd ≤ 600 mm.
Horisontella reglar av konstruktionsvirke 45×45 mm.
Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull.
Spikläkt: konstruktionsvirke 34×70 mm, G4-3 eller bättre, med lutande översida.
Utförande
Väggreglar monteras på övre syllen. Horisontella reglar spikas mot syll, hammarband och väggreglar. Spikläkt för ytterväggspanel spikas mot vindskydd och mot horisontella reglar. Den nedersta, och eventuellt den översta, placeras så att avståndet från panelände till infästningen blir 100-150 mm. Ångspärren monteras med minst ≥ 200 mm överlapp och kanten kläms mellan golvskiva och kortling/vinkelprofil.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot betongplatta på mark
Ingående material
- Stående fasadpanel.
- Spikläkt.
- Vindskydd av oorganiskt material.
- Yttre isolerskikt fäst med distanshylsor.
- Värmeisolering.
- Väggregel.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt
- Invändig beklädnad.
- Syll.
- Syllisolering.
Material
Väggreglar: stående lättreglar 45×220 mm, centrumavstånd ≤ 600 mm.
Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull.
Syll: av lättregeltyp.
Syllisolering: EPDM cellgummilist med polyetenfilm.
Ångspärr: åldringsbeständig plastfolie.
Fästdon: expanderande skruv till syll-betongplatta.
Utförande
Väggreglar monteras på syllen. Spikläkt för ytterpanel fästs vid användning av distanshylsor via dessa genom vindskyddet och det yttre isolerskiktet fast mot de vertikala reglarna. Alternativt används horisontella reglar i det yttre isolerskiktet och då fästes spikläkten i dessa. Den nedersta, och eventuellt den översta, placeras så att avståndet från panelände till infästningen blir 100-150 mm. Ångspärren monteras så att nederkanten kläms mot plattan.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot mellanbjälklag
Ingående material
- Horisontell väggregel, alternativt distanshylsor.
- Vindskydd av oorganiskt material.
- Syll.
- Kantbalk.
- Hammarband.
- Vertikal väggregel.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
- Klämd ångspärr.
- Kortling.
- Golvbjälke.
Material
Väggreglar: vertikala reglar av konstruktionsvirke 45×145-220 mm, centrumavstånd ≤ 600 mm. Horisontella reglar av konstruktionsvirke 45×45 mm.
Hammarband, syll: konstruktionsvirke med samma dimensioner som väggreglarna.
Kortlingar: konstruktionsvirke med samma dimensioner som golvbjälkarna.
Ångspärr: åldringsbeständig plastfolie.
Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull. Mot yttervägg fylls bjälklaget fullt till en bredd av 600 mm.
Utförande
Innan golvbjälkarna monteras bör en > 700 mm bred våd av ytterväggens ångspärr sättas upp längs bjälklagets kanter. Golvbjälkarna lhängs in i kantbjälken enligt konstruktionsritningar. Väggreglar monteras på syllen och spikas.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot mellanbjälklag – väggreglar
Ingående material
- Vindskydd. Vindskydd av oorganiskt material.
- Yttre isolerskikt fäst med distanshylsor.
- Syll.
- Hammarband.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
- Kantbjälke.
- Väggregel.
- Bjälklag.
Material
Väggreglar: stående reglar 45×220 mm, centrumavstånd ≥ 600 mm.
Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull. Mot yttervägg fylls bjälklaget fullt till en bredd av 600 mm.
Ångspärr: åldringsbeständig plastfolie.
Invändig beklädnad: beklädnadsskivor eller träpanel.
Utförande
Innan golvbjälkarna monteras bör en >700 mm bred våd av ytterväggens ångspärr sättas upp längs bjälklagets kanter. Golvbjälkarna läggs upp på hammarbandet och skråspikas. Minsta upplagslängd 70 mm. Väggreglar monteras på syllen och spikas i golvbjälkarna.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot vindsbjälklag och inklädd takfot
Ingående material
- Takfotspanel.
- Insektsnät.
- Lockbräda/lockläkt.
- Bottenbräda.
- Spikläkt.
- Vindskydd.
- Yttre isolerskikt fäst med distanshylsor.
- Kortling.
- Hammarband.
- Vindskydd.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
Material
Vindskydd i vägg: skivmaterial, utvändig godkänd och fukttålig skiva.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: stående träpanel.
Ångspärr: åldringsbeständig plastfolie.
Utförande
Bottenbräderna spikas med passning i överkant mot bräda 28×70 mm mot vilken lockbräda eller locklist monteras. Vid tjock bjälklagsisolering bör vindskyddsskivan fixeras upptill. Detta kan åstadkommas genom att stödläkt eller vinkelprofiler i plåt monteras mot underram och överram samt kortling alternativt vinkelprofil mellan takstolarnas överramar. Färdiga skivprodukter för att säkerställa luftspalt vid takfot finns också att tillgå.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot vindsbjälklag och öppen takfot
Ingående material
- Insektsnät.
- Lockbräda/lockläkt.
- Bottenbräda.
- Vindskydd.
- Yttre isolerskikt fäst med distanshylsor.
- Spikläkt.
- Kortling.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Vindskydd.
Material
Väggreglar: konstruktionsvirke 45×195 mm.
Horisontella reglar av konstruktionsvirke 45×45 mm.
Vindskydd i vägg: skivmaterial, utvändigt godkänd och fukttålig skiva.
Värmeisolering i vägg: skivor av mineralull.
Utvändig beklädnad: stående träpanel.
Ångspärr: åldringsbeständig plastfolie.
Utförande
Den översta spikläkten monteras så att avståndet från panelbrädernas ände till spik blir 100-200 mm. Vid tjock bjälklagsisolering bör vindskyddsskivan ha bakomliggande stöd upptill. Detta kan åstadkommas genom att stödläkt alternativt vinkelprofiler i plåt monteras mot underram och överram samt kortling eller vinkelprofil mellan takstolarnas överramar. Luftspalten mellan tak och värmeisolering bör vara 25 mm och den ska förses med insektsnät.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot ytterväggshörn – korsande regelverk
Ingående material
- Utvändig beklädnad.
- Spikläkt.
- Luftspalt/kapillärbrytande spalt.
- Vindskydd.
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Hörnregel.
- Ångspärr.
- Horisontell väggregel, så kallade installationsskikt.
- Invändig väggbeklädnad.
- Vertikal väggregel
Material
Ytterväggsreglar: vertikala reglar av konstruktionsvirke 45×145-220 mm, centrumavstånd ≤ 600 mm. Horisontella reglar av konstruktionsvirke 45×45 mm, respektive 45×70 mm.
Vindskydd: Vindskydd av oorganiskt material.
Hörnregel: konstruktionsvirke 45×45 mm.
Värmeisolering: skivor av mineralull. Utvändig beklädnad: stående träpanel.
Ångspärr: åldringsbeständig plastfolie.
Utförande
För att stabilisera vägghörnet utan att åstadkomma köldbryggor monteras en hörnregel mot det horisontella regelverket. Vindskyddsskivor skruvas i regelverket. Alternativet till hörnregel är hörnprofil i plåt.
Bärande ytterväggar av konstruktionsvirke eller lättreglar med anslutning mot ytterväggshörn, enkelt regelverk – massivreglar
Ingående material
- Hörnbräda.
- Hörnbräda.
- Spikläkt.
- Vindskydd av oorganiskt material.
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Spaxskruv.
- List.
- Värmeisolering.
- Väggregel.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig beklädnad.
Material
Väggreglar: stående massivreglar 45×145-220 mm, centrumavstånd ≤ 600 mm.
Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva.
Ångspärr: åldringsbeständig plastfolie.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: stående träpanel.
Spikläkt: konstruktionsvirke 34×70 mm, G4-2 eller bättre, med lutande översida och underliggande vertikal distans/luftning.
Icke bärande yttervägg – principlösning
Ingående material
- Väggreglar av konstruktionsvirke, centrumavstånd ≤600 mm.
- Byggnadsstomme av betong.
- Syll av konstruktionsvirke.
- Ångspärr av 0,20 mm åldersbeständig plastfilm.
- Kantisolering av mineralull.
- Värmeisolering av mineralull.
- Vindskydd av skivbeklädnad.
- Vindskydd över elementfogar av skivmaterial. Tätad översida.
- Drevning av mineralull.
- Infästningsbeslag.
- Invändig beklädnad av beklädnadsskivor eller träpanel.
- Luftspalt.
Tekniska data
Egentyngd: cirka 0,30 kN/m2.
Råd och anvisningar
Det förtillverkade väggelementet monteras så långt ut i fasadliv som möjligt för att möjliggöra isolering av bjälklagskant och bärande innervägg och därigenom nedbringa köldbryggeeffekterna. Detta ställer dock höga krav på infästningar och luft- och brandtätning mellan element och vägg samt på arbetsutförandet.
Väggelementet sätts på plats med mellanlägg av icke fuktkänsligt material, till exempel plast, fästs med beslag och expanderande skruv i stommen. Drevningen runt elementet bör vara av åldringsbeständigt material. Ångspärren i väggen kläms slutligen med cellgummilist i spalten mellan elementets yttersidor och stommen. Gäller runt om elementet.
Typdetaljer
På separata sidor länkade nedan redovisas träbyggnadstekniska typdetaljer för icke bärande yttervägg med förtillverkade väggelement med stomme av konstruktionsvirke:
- Anslutning mot grundkonstruktion
- Anslutning mot mellanbjälklag
- Anslutning mot vindsbjälklag
- Anslutning mot bärande innervägg
- Anslutning mot ytterväggshörn
Fönster i ytterväggar – principlösning
Ingående material
- Invändig väggbeklädnad av skivmaterial eller spontad träpanel.
- Horisontell väggregel, så kallad installationsskikt.
- Ångspärr av åldersbeständig plastfolie.
- Väggreglar av konstruktionsvirke.
- Invändig fönsterbänk.
- Smyglist.
- Fönsterkarm.
- Tätningslist av EPDM cellgummi eller massivgummi.
- Drevning av remsor av inplastad mineralull.
- Fönsterbleck av plåt.
- Droppnäsa.
- Smygbräda av hyvlat virke.
- Foderbräder av hyvlat virke.
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Vindskydd av diffusionsöppet oorganiskt material.
- Spikläkt av konstruktionsvirke.
- Luftspalt, ventilerande och kapillärbrytande.
- Utvändig beklädnad av träpanel.
Råd och anvisningar
Trävirke ska vid inbyggnad ha en fuktkvot av högst 18 %. Spik, skruv och byggbeslag ska vara av varmförzinkat stål eller ha lägst motsvarande korrosionsskydd.
Innan fönstret monteras ska ångspärren skäras till så att en cirka 200 mm bred remsa lämnas i fönsterhålet. Ångspärren kläms mellan fönsterkarm och sidostycken eller motsvarande med hjälp av bottningslist av EPDM-gummi. I hörn, där ångspärren skurits i 45° vinkel, skarvas plastfolien och kläms med påsalning alternativt fönsterbänk. Fönstret passas in i fönsterhålet med hjälp av kilar. Därefter skruvas fönstrets karmsidostycken i regelverket. Kilar får inte förekomma mellan karmöverstycke och regelverk eftersom vertikala laster inte får överföras till fönstret. Drevning sker utifrån mot bottningslisten.
Det är viktigt att montera droppbleck så att fönsterkarm och båge skyddas mot regn. Det innebär att blecket bör monteras mot väggregelkonstruktionen innan vindskyddet monteras. Droppblecket monteras mot stödläkt som täcker spalten mellan fönsterkarm och byggnadsstomme.
Fönsterbleck monteras så att dels luftning av ytterväggspanelen medges, dels tillräcklig lutning av blecket möjliggörs. I vissa fall kan en särskild stödprofil vara befogad för att inte ett långt utskjutande fönsterbleck ska riskera att brytas.
De inre smygbräderna spikas mot regelverket så att en klämning mot karmsidostycket erhålls. Fönsterfoder eller bottenbräda spikas så att smygbrädans kant döljs. För att ge en bättre ljusspridning till rummet är det önskvärt att smygbräderna vinklas eller lutas. Om fönstret placeras indraget i fasaden kan det vara en utseendemässig fördel om även de yttre smygbräderna vinklas.
Fönster i yttervägg med reglar av konstruktionsvirke i två skikt – alternativ 1, vertikalsektion
Ingående material
- Lockbräda/Lockläkt.
- Bottenbräda.
- Luftspalt.
- Spikläkt.
- Väggreglar.
- Ångspärr.
- Fönsterbleck.
- Droppbleck.
- Invändig beklädnad.
- Smygbräda.
Material
Väggreglar: vertikala reglar av konstruktionsvirke 45×145 mm, centrumavstånd ≤ 600 mm.
Horisontella reglar av konstruktionsvirke 45×45 mm.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: stående träpanel.
Ångspärr: 0,20 mm åldringsbeständig plastfolie.
Spikläkt: virke 34×70 mm, lutande översida.
Drevning: remsor av inplastad mineralull.
Tätningslist: bottningslist av EPDM-gummi.
Distansläkt: brädstycken, centrumavstånd ≤ 600 mm, med samma tjocklek som ytterpanelens bottenbräda.
Utförande
Ångspärren kläms mot bottningslist och skarvas med lös filmremsa i smygen. Droppbleck monteras mot stödprofil av trä. Spikläkten och den horisontella regeln under karmbottenstycket placeras så att god lutning av fönsterblecket erhålls.
Fönster i yttervägg med reglar av konstruktionsvirke i två skikt – alternativ 1, horisontalsnitt, vinklad smyg
Ingående material
- Utvändig beklädnad.
- Spikläkt.
- Vindskydd.
- Foderbräda.
- Tunn vertikal läkt för luftning.
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Drevning.
- Fönsterbleck.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
- Väggregel.
- Smygbräda.
- Fönsterbänk.
Material
Väggreglar: vertikala regelverk av konstruktionsvirke 45×145-220 mm,
centrumavstånd ≤ 600 mm.
Enkelt horisontellt reglar av konstruktionsvirke 45×45 mm.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: stående fasspontad träpanel.
Ångspärr: åldringsbeständig plastfolie.
Spikläkt: konstruktionsvirke 34×70 mm, lutande översida.
Drevning: remsor av inplastad mineralull.
Tätningslist: bottningslist av EPDM-gummi eller motsvarande.
Utförande
Ångspärren kläms mot drevningslist och skarvas vid behov i hörn. För att minska risken för kondens i fönstrets nedre del lutas karmunderstyckets smygbräda och en lös fönsterbänk monteras på konsoler. Även sidostycken av smyg- bräder kan med fördel vinklas för att ge större ljusutbyte till rummet.
Fönster i yttervägg med reglar av konstruktionsvirke i två skikt – alternativ 2, vertikalsektion
Ingående material
- Droppbleck.
- Fönsterbleck.
- Lockbräda/Lockläkt.
- Bottenbräda.
- Spikregel.
- Vindskydd.
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Värmeisolering.
- Invändig beklädnad.
- Drevning.
- Tätningslist.
- Fönsterbräda.
- Väggregel.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig beklädnad.
Material
Väggreglar: lättreglar 45×220 mm, centrumavstånd ≤ 600 mm.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: stående träpanel.
Ångspärr: åldringsbeständig plastfolie.
Spikläkt: konstruktionsvirke 34×70 mm, lutande översida.
Drevning: remsor av inplastad mineralull.
Tätningslist: bottningslist av EPDM-gummi eller motsvarande.
Utförande
Fönsterkarmen placeras i den värmeisolerade delen av väggen för att minimera verkan av köldbryggor. Ångspärren kläms mot drevningslist och skarvas vid behov i hörn. Smygfönsterbräda och smygbräder pressas mot fönsterkarm.
Fönster i yttervägg med reglar av konstruktionsvirke i två skikt – alternativ 2, horisontalsnitt, rak smyg
Ingående material
- Utvändig beklädnad.
- Spikläkt.
- Tunn vertikal läkt för luftning.
- Vindskydd. ´
- Yttre isolerskikt med horisontell väggregel, alternativt distanshylsor.
- Bakomliggande foderbräda.
- Drevning.
- Fönsterbleck.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
- Väggreglar.
- Smygbräda.
- Fönsterbänk.
Material
Väggreglar: stående reglar, centrumavstånd ≤ 600 mm.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: stående träpanel.
Ångspärr: åldringsbeständig plastfolie.
Smygbräda: 22 mm hyvlat virke med fals.
Drevning: remsor av inplastad mineralull.
Tätningslist: bottningslist av EPDM-gummi eller motsvarande.
Utförande
Ångspärren kläms mot drevningslist och skarvas vid behov i hörn. För att förbättra ljusspridningen till rummet vinklas den invändiga smygbrädan. Smygbrädan pressas mot karmsidostycket.
Fönster i yttervägg med reglar av konstruktionsvirke i ett skikt – anslutning mot skalmur
Ingående material
- Murverk.
- Luftspalt.
- Yttre isolerskikt klädd med vindpapp, horisontell regel, alternativt distanshylsor.
- Droppbleck.
- Drevning.
- Tätningslist.
- Väggregel.
- Värmeisolering.
- Ångspärr.
- Horisontell väggregel, så kallad installationsskikt.
- Invändig väggbeklädnad.
Material
Väggreglar: konstruktionsvirke 45×195-220 mm, centrumavstånd ≤ 600 mm.
Värmeisolering: skivor av mineralull.
Utvändig beklädnad: murverk av tegel.
Ångspärr: åldringsbeständig plastfolie.
Drevning: remsor av inplastad mineralull.
Tätningslist: bottningslist av EPDM-gummi eller motsvarande.
Droppbleck, fönsterbleck: stålplåt eller kopparplåt.
Luftspalt: 30 mm.
Utförande
Fönsterkarmen förläggs i den värmeisolerade delen av väggen för att minimera verkan av köldbryggor. Övergången mellan murverk och den isolerade delen av väggen kläs in med plåtbeslag.
Bärande innervägg av konstruktionsvirke – principlösning
Ingående material
- Väggreglar av 45 mm konstruktionsvirke, centrumavstånd ≤600 mm.
- Invändig beklädnad av gipsskivor.
- Golvregel av 45 mm konstruktionsvirke.
- Kortling av konstruktionsvirke 45 mm.
- Spikregel av konstruktionsvirke 45×45 mm.
- Bandstål 50×1,0 mm som markerar bärande vägg, centrumavstånd 600 mm.
Tekniska data
Brandmotstånd: brandklass EI 30 för bärande vägg uppfylls i en vägg som består av 45×95 mm konstruktionsvirke med 12 mm beklädnadsskivor och stenull mellan skivorna.
Ljudisolering: för väggar i kontor och butikslokaler gäller kravet på ljudisolering mellan arbetsrum och rum utanför kontoret eller butiken, dock inte mellan trapphus eller korridor och arbetsrum: R’w ≥ 44 dB. För lägenhetsskiljande väggar i bostäder och i hotellrum, dock inte i sammanbyggda småhus, gäller: R’w ≥ 52 dB.
Råd och anvisningar
Den bärande väggen monteras tvärs golvbjälkarna, alternativt på golvbjälken, i dess längdriktning. Trävirke ska vid inbyggnad ha en fuktkvot på högst 18 %. Golvbeläggning eller undergolv ska ansluta mot golvreglarna så att golvet kan bytas utan att väggen behöver flyttas eller avlastas. För att markera att väggen är bärande och för att förstärka väggreglarna i veka riktningen innan beklädnadsskivorna monterats eller om de avlägsnas är det lämpligt att montera bandstål, centrumavstånd ≤ 600 mm, på reglarnas båda sidor. Under golvregeln monteras en stödregel – kortling – mellan golvbjälkarna i varje fack. Kortlingen vilar på spikreglar som monteras på golvbjälkarna. För att åstadkomma ljuddämpning mellan rummen är det lämpligt att till en tredjedel av bjälklagshöjden fylla utrymmet mellan reglarna med mineralull.
Bärande innervägg av konstruktionsvirke med anslutning mot bottenbjälklag
Ingående material
- Väggregel.
- Golvregel.
- Syll.
- Fuktspärr.
- Spikregel 45×45.
- Undergolv.
- Värmeisolering.
- Kortling.
Material
Väggregel: konstruktionsvirke 45×95 mm, centrumavstånd ≤ 600 mm.
Golvregel: konstruktionsvirke 45×95 mm.
Syll: konstruktionsvirke, ≥ 45 mm.
Kortlingar: konstruktionsvirke 45 mm.
Utförande
Syll monteras med expanderande fästdon och med mellanlägg av fuktspärr mot underlaget. Kortlingar med samma dimension som golvbjälkarna monteras i varje bjälkfack längs innerväggens centrumlinje. För att markera den bärande väggen och för att staga väggreglarna i den veka riktningen, monteras stålband tvärs reglarna,
centrumavstånd < 600 mm, på båda sidor om väggen, bakom skivbeklädnaden.
Bärande innervägg av konstruktionsvirke med anslutning mot mellanbjälklag
Ingående material
- Mellanbjälklag.
- Stegljudsisolering.
- Väggregel.
- Takregel/hammarband.
- Väggbeklädnad.
- Underlag av glespanel 22×70 mm med centrumavstånd < 400 mm.
- Takbeklädnad.
Material
Väggreglar: konstruktionsvirke 45×95 mm, centrumavstånd ≤ 600 mm.
Takregel: konstruktionsvirke 45×95 mm.
Väggbeklädnad: gipsskivor, spontad träpanel eller beklädnadsskivor.
Hörnprofil: vinkelprofil av plåt.
Utförande
För att markera den bärande väggen och för att staga väggreglarna i den veka riktningen, monteras stålband tvärs reglarna,
centrumavstånd ≤ 600 mm, på båda sidor om väggen, bakom väggbeklädnaden. Om väggbeklädnad i form av skivmaterial används är det lämpligt att först montera hörnprofiler som utgör skruvfäste för skivorna.
Källa: https://www.traguiden.se/konstruktion/konstruktionsexempel/vaggar/
IT-standarder inom skolväsendet
Ett stort problem inom skolans värld är att olika IT-system inte fungerar tillsammans eller att en massa information behöver läggas in flera gånger i olika system eftersom de inte automatiskt kan dela information mellan sig.
Det beror oftast på att det saknas smarta och enhetliga sätt att definiera den information som systemen ska hantera eller hur kommunikationen mellan olika system ska ske.
För att lösa sådana problem brukar man ta fram och sedan hålla sig till standarder.
Nu har Sverige äntligen fått igång ett arbete som syftar till att definiera vilka IT-standarder som är av relevans för skolan.
Tillsammans med Skolverket, SIS, flera huvudmän och i samband med ett Vinnova-finansierat projekt om standarder för datadrivna processer, har Swedish Edtech Industry påbörjat ett arbete att ta fram en lista över de standarder och rekommendationer som finns och som är aktuella för att skapa ett säkert, effektivt, kvalitativt digitalt ekosystem för det svenska skolväsendet.
En kort sammanfattande information om detta arbete och vad standarder innebär kan läsas nedan. Men för mer information och för löpande aktuell information om arbetet rekommenderas läsning direkt från ursprungskällan på Edtechkartan.se.
Edtechkartan.se som lanserades hösten 2018 är en systemkarta över det svenska edtech-landskapet med inriktning på skolväsendet. Det är en interaktiv och lättanvänd digital systemkarta som löpande kommer att hållas uppdaterad. Kartan tar utgångspunkt i skolans och skolhuvudmannens verksamhetsprocesser och utifrån dessa verksamhetsområden mappas leverantörer in som idag har lösningar för att stödja processen. Det har hittills inte funnits en mer detaljerad bild över det komplexa digitala ekosystemet som utbildningssektorn utgör.
Interoperabilitet och it-standarder
Alla dessa standarder
Kravställ för interoperabilitet, kravställ standarder! En enkel uppmaning, men inte lika enkel att genomföra. Begreppet standard tolkas på olika sätt och det är viktigt att peka på vad vi menar och vad skillnaderna är. Det finns nationella och internationella standarder, det finns rekommendationer som i princip anses vara standarder men med olika “dialekter”(där rekommendationerna tolkas och används på olika sätt). Vi är alla överens om behovet av att etablera standarder, göra dem vedertagna för ett kvalitetssäkrat digitalt ekosystem, för ett ett säkert och effektivt informationsflöde, för interoperabilitet. Men om standarder inte beställs, så testas och implementeras de inte. Man ska också vara medveten om att standarder blir gamla och det finns risk för cementering av it-miljöerna. Alltså behöver vi alla hela tiden vara uppmärksamma, föra dialog och tillsammans se till att de standarder som finns är aktuella.
Det är också viktigt att inte blanda ihop vad som är en standard och vad som är en faktisk lösning. En standard beskriver och definierar. En lösning levererar (och det finns således alltid en leverantör bakom).
I december 2019 etablerades ett nationellt forum för arbetet med standarder: Forum för informationsstandardisering i skolväsendet. Ett forum Skolverket ansvarar för, i samverkan med olika aktörer, däribland Swedish Edtech Industry.
Vad är egentligen en “standard”?
En teknisk standard är en specifikation av ett format som tas fram, förvaltas och tillhandahålls av en standardiseringsorganisation, men en standard kan också vara en överenskommen definition av ett begrepp eller ord (klass, grupp o.s.v.). Standarder utvecklas vanligen genom frivilliga överenskommelser. Ett givet format kan vara erkänt av fler än en organisation och det finns format som inte erkänts av någon standardiseringsorganisation.
SIS, Svenska institutet för standarder, definierar begreppet standard så här:
En standard är en smart gemensam lösning på ett återkommande problem. Syftet med standarder är att skapa enhetliga och transparenta rutiner som vi kan enas kring.
Standarder kopplat till lärande, kommer ofta i paket med olika delar och är mer eller mindre heltäckande. Det finns olika organisationer som arbetar med olika former av “standardpaket”:
– ISO, International organization för standardization. Levererar internationella standarder, där delar kan användas och andra anpassas enligt lokala (nationella) behov inom specifika områden.
– SIS, Svenska institutet för standarder. Arbetar i tekniska kommittéer där standarder tas fram kopplat till olika områden, varav TK450 är en kommitté med fokus på standarder för it och lärande. I TK450 ingår flera olika arbetsgrupper där en arbetsgrupp t.ex. tagit fram SS12000, en annan EMIL (Education Information Markup Language). Speglar det internationella arbetet i ISO och gör nationella anpassningar.
– IMS Global Learning Consortium – levererar olika rekommendationer som sedan tolkas och anpassas. Ibland brukar man säga att IMS rekommendationer har olika “dialekter”. Ett exempel är IMS LTI (Learning Tools Interoperability), en “standard” (rekommendation) för anslutning av externa webbaserade lärresurser och innehåll till andra plattformar.
Stöd i arbetet: en lista med standarder
Tillsammans med Skolverket, SIS, flera huvudmän och i samband med ett Vinnovafinasierat projekt om standarder för datadrivna processer, har vi påbörjat en lista över de standarder och rekommendationer samt några relevanta informationsflöden som finns och som är aktuella för att skapa ett säkert, effektivt, kvalitativt digitalt ekosystem.
Denna listning har vi inom ramen för det här projektet gått igenom och mappat gentemot de olika områden och processer som finns definierade i edtechkartan. Vi har också gjort en ansats till att visa vilka standarder som aktuella respektive inaktuella, eftersom det är viktigt att inte fastna i äldre teknik eller i standarder som i sin tur kan bli cementerande.
I nedan länkat kalkylark finns listningen + områden & processer + definitioner och lite annat smått och gott som vi hoppas är till nytta i arbetet med kravställningar. Dokumentet ska ses som ett arbetsdokument, öppet för alla att kommentera i, så gör gärna det. Tillsammans kan vi göra det mer komplett och hålla det uppdaterat.
Länk till dokumentet: It-standarder skola, informationsflöden, områden och processer
VR suddar ut gränserna mellan liv och död
Skulle du vilja träffa en avliden person som du älskar igen, i en virtuell värld?
2016 dog Jang Ji-sungs sju år gamla dotter Nayeon av en obotlig sjukdom. Tre år senare återförenades den sydkoreanska mamman med Nayeon, i en virtuell värld skapad för en TV-dokumentär.
I nedanstående Youtube-film har Munhwa Broadcasting Corporation delat sekvenser från den speciella dokumentären, med titeln ”Jag träffade dig”, där bilderna klipptes mellan ”den verkliga världen” och den virtuella.
Först ser vi hur Jang står framför en massiv grön skärm medan hon bär både ett VR-headset och någon slags haptiska handskar. Lite senare ser vi hur hon pratar med sin dotter, håller hand och till och med har en födelsedagsfest i deras favoritpark med en tårta med tända ljus.
VR-återföreningen är, som du kan förvänta dig, extremt känslomässig. Jang börjar gråta i det ögonblick hon ser den virtuella Nayeon, medan resten av familjen, Nayeons far, bror och syster ser hur den känslomässiga återföreningen mellan mamman och dottern utspelas framför dem.
”Kanske är det ett riktigt paradis,” sade Jang om återföreningen i VR enligt Aju Business Daily. ”Jag träffade Nayeon, som mötte mig med ett leende för en mycket kort tid, men det är en mycket lycklig tid. Jag tror att jag har haft den dröm jag alltid velat ha.”
Enligt Aju Business Daily tillbringade produktionsteamet åtta månader på projektet. De designade den virtuella parken efter en som mor och dotter hade besökt i den verkliga världen, och använde rörelsefångstteknologi (motion capture) för att spela in rörelserna hos en barnskådespelare som de senare kunde använda som modell för sin virtuella Nayeon.
Processen är kanske inte enkel, och slutprodukten kanske inte är helt perfekt, men vi har nu tekniken för att återskapa de döda i VR – övertygande nog för att få sina nära och kära till tårar.
Konsekvenserna av detta är omöjliga att förutsäga.
Det kan ha tagit ett helt team av experter att producera ”Jag träffade dig”, men hur långt är vi från att ha en plattform som låter någon ladda upp bilder av en avliden kärlek och sedan interagera med en virtuell version av den personen? År? Månader?
Vilken typ av påverkan kommer detta att ha på sorgprocessen?
Kommer det hjälpa människor att komma till ett avslut och gå vidare med sina liv, om de får se en nära anhörig i VR efter dennes död? Kommer vissa människor bli beroende av den virtuella världen, spendera mer och mer tid i den och mindre och mindre i den verkliga?
Och kommer det att sluta med VR? Eller är detta bara det första steget till androider utformade för att härma, imitera och ersätta våra döda nära och kära till både utseende och personlighet, som i avsnittet ”Black Mirror” Be Right Back?
Flera nystartade företag lägger grunden för den framtiden och sammanställer data om människor, både levande och döda, så att de med hjälp av AI kan skapa ”digitala avatarer” av dessa människor och återskapa både röster och simulerade datorgenerade filmklipp med fotorealistisk och verklighetstrogen kvalitet. Andra företag bygger redan robotkloner av riktiga människor.
Nyckeln till att en VR-återförening blir en positiv sak, det vill säga mer som ett tjugoförsta århundradets utvecklade variant av ett fotoalbum och mindre som ”Black Mirror”-avsnittet, verkar vara att den levande personen helt accepterar sin älskades död.
”Eftersom du vet att personen är borta accepterar du den virtuella motsvarigheten för vad den är – ett tröstande minne,” sa Princeton neurovetenskapsman Michael Graziano till Dell Technologies i december. ”Det är inget fel eller oetiskt med det.”
Kanske är reglering nödvändig? I stället för att låta nystartade företag erbjuda allmänheten chansen att interagera med virtuella versioner av sina döda nära och kära, utan tvekan till en kostnad, kanske vi bör göra tekniken tillgänglig endast för personer som först har genomgått en screening med en psykolog?
Det är svårt i dagsläget att säga vad som kan fungera eftersom möjligheten att interagera med övertygande versioner av den avlidne i VR definitivt är ett outforskat territorium. Men nu när vi officiellt har kommit in på den arenan har vi många frågor vi måste svara på så snart som möjligt.
Diskussionsfrågor:
- Skulle du vilja träffa en avliden person som du älskar igen, i en virtuell värld?
- Vilka fördelar ser du med den här tekniken?
- Vilka nackdelar ser du med den här tekniken?
- Anser du att det är etiskt att använda AI och VR-tekniken så här?
- Tycker du att den här teknikanvändningen borde regleras?
- Vilka företag eller organisationer tycker du borde hantera och erbjuda den här typen av tjänster?
- Vilka yrkeskategorier anser du bör vara inblandande i projektgruppen för att utveckla en sådan här VR-upplevelse?
Omvända solceller kan generera el på natten
Tänk om solceller fungerade på natten? Det är inget skämt, enligt Jeremy Munday, professor vid institutionen för elektroteknik och datateknik vid UC Davis. I själva verket skulle en speciellt designad fotovoltaisk cell kunna generera upp till 50 watt effekt per kvadratmeter under idealiska förhållanden på natten, ungefär en fjärdedel av vad en konventionell solpanel kan generera dagtid, enligt ett konceptdokument från Munday och doktorand Tristan Deppe. Artikeln publicerades i och presenterades på omslaget till januari 2020-numret av ACS Photonics.
Munday, som nyligen anslöt till UC Davis från University of Maryland, utvecklar prototyper av dessa ”nattsolceller” som kan generera små mängder elektrisk ström. Forskarna hoppas kunna förbättra enhetens effekt och effektivitet.
Munday sa att processen liknar hur en normal solcell fungerar, men omvänt. Ett objekt som är varmt jämfört med omgivningen kommer att stråla ut värme som infrarött ljus. En konventionell solcell är kall jämfört med solen, så den absorberar ljus.
Rymden är verkligen kall, så om du har ett varmt föremål och riktar det mot himlen, kommer det att stråla ut värme mot rymden. Människor har använt detta fenomen för nattkylning i hundratals år. Under de senaste fem åren, sade Munday, har det varit mycket intresse för enheter som kan göra detta under dagen (genom att filtrera bort solljus eller rikta bort från solen).
Genererar kraft genom att stråla ut värme
Forskarna beskriver sin uppfinning som i det närmaste en omvänd solpanel. Istället för att alstra elektricitet genom att fånga solstrålar, ska de alstra el genom att sända ut värmestrålning i rymden.
Det finns redan liknande enheter, s k termoradiativ cell, som genererar ström genom att utstråla värme till omgivningen. Forskare har undersökt att använda dem för att fånga spillvärme från motorer.
”Vi tänkte, om vi tog en av dessa enheter och lägger den i ett varmt område och pekade det mot himlen,” sa Munday. Denna termoradiativa cell som riktas mot natthimlen skulle avge infrarött ljus eftersom det är varmare än yttre rymden.
”En vanlig solcell genererar el genom att absorbera solljus, vilket får en spänning att dyka upp över enheten och en ström att flöda. I dessa nya enheter släpps ljus istället ut och strömmen och spänningen går i motsatt riktning, men du genererar fortfarande ström, ”sa Munday. ”Du måste använda olika material, men fysiken är densamma.”
Enheten fungerar också under dagen om du vidtagit åtgärder för att antingen blockera direkt solljus eller rikta bort det från solen. Eftersom denna nya typ av solcell potentiellt skulle kunna fungera dygnet runt är det ett spännande alternativ för att balansera elnätet över dygnet mellan dag och natt.
Forskarna vid UC Davis ska nu konstruera små prototyper av sina anti-solceller för att testa hur väl de fungerar och hur hög effekt de kan få ut.