Känner du dig ibland trött under möten eller i skolan? Har du ibland huvudvärk efter jobbet eller skolan? Vill du ändra på det? Då kan det vara intressant för dig att mäta skadliga gaser i luften i din arbetsmiljö, vilka kan resultera i både trötthet och huvudvärk.
I filmklippet nedan används en ESP32 och två ESP8266 med sensorer för att bygga ett system som mäter luftkvaliteten. Sensorerna som används är: Winsen MH-Z19, Sensirion SGP30 och SCD30. I denna video:
Fokusera på inomhusklimat
Fokusera på gaser där den främsta källan är människor
CO2:s påverkan på luftkvaliteten inomhus
Se förhållandet mellan CO2-sensorer och global uppvärmning
Använd ett annat sätt för att bedöma inomhusluften: VOC eller eCO2
Och vi kommer att bygga sensorer för att överföra värden till Grafana
En ny våg av innovation driver en radikal förändring av mode och textilbranschen. I framtiden kan kläder vara datorer, tillverkade med material designade och odlade i ett labb.
Filmen nedan ger en inblick i det som har kommit att kallas Fashiontech.
Kopiera nedanstående text, klistra in den i din loggbok och läs sedan texten.
Bärbar teknik, data, automatisering och labbodlat material kommer att ha en stor inverkan på vad människor kommer att ha på sig i framtiden.
Sedan sömnaden och vävningen föddes har tekniken alltid lett till utveckling inom mode. Den industriella revolutionen mekaniserade tillverkning som möjliggör massproduktion. På 1960-talet tog syntetiska material som polyester fart och skapade nya möjligheter för mode.
Nu öppnar konvergensen av ny teknik upp tidigare otänkbara möjligheter. Dr Amanda Parkes är modevetenskapsman och chef för innovation vid FT-labs, ett riskkapitalföretag som främst investerar i modetekniska startups. Hon berättar att det bland dessa nystartade företag handlar om att hitta nästa generation förnybara material som kan odlas i ett labb. Traditionell siden produceras av insektslarver som bildar kokonger, oftast silkesmaskar. Men snarare än att lita på dessa insekter, så skapar bulttrådar silke i provrör. Biotillverkade material tar bort behovet av djur och insekter och det är ett mer hållbart och effektivt sätt att producera råmaterial.
Andra företag skapar läderalternativ. I stället för att använda djur skapar forskare biotillverkade material från ananasblad och till och med svamp. Konvergensen mellan mode och teknik ger också möjligheter att förändra inte bara kläder utan de människor som bär dem.
Myant är ett företag som är banbrytande i skapandet av kläder som kan övervaka alla dina rörelser. Så kallade smarta tyger förutspås bli nästa stora genombrott för bärbar teknik. Garn kombineras med elektroniska sensorer så att viktiga data kan fångas från människokroppen. För att skapa kläder som kan övervaka bärarens hälsa och fitness har Myant samlat team av människor som inte traditionellt har arbetat under samma tak. Smarta tyger kan radikalt förändra konsumenternas relationer till kläderna de bär, men när tekniken ökar förändringstakten, hur kan branschen hålla reda på vad konsumenterna verkligen vill ha?
Francesca Muston är chef för detaljhandeln på WGSN, världens ledande modeprognosbyrå. Personalen här använder big data för att analysera politiska, sociala och miljömässiga trender för att förutsäga morgondagens heta mode. Teknik driver en explosion i konsumentens val såväl som det förvirrande utbudet av kläddesign och skapande. För att textil- och modebranschen ska överleva vänder de sig till tekniken. Maskininlärningsteknologier är nu centrala för modeprognoser, vilket snabbt upptäcker mönster bland den ständigt växande datamängden.
Från bioteknik till demografiska förändringar och att förutsäga trender är inte längre en konst, det har blivit en vetenskap.
I konstruktionskursens del av Fashiontech-projektet kommer vi jobba med både Elektronikkonstruktion och Mekanisk konstruktion.
Elektronikkonstruktionsarbetet omfattar följande delar:
Kravspecifikation/kravbeskrivningar
Funktionsspecifikation/funktionsbeskrivning
Blockschema
Flödesschema/flödesmodeller
Kopplingsschema
Kretsschema
Kretskortslayout
Mönsterkort
Anslutningsdon
Ledare och kablage
Kylning
Analog och digital teknik, analoga och digitala komponenter, signaler och kretsar.
Logik och Boole’s algebra
Funktionstabeller/sanningstabeller
Olika talsystem, binära, hexadecimala
ASCII-kod och Unicode
Prototyper, test och simuleringar
Lödning
Strömförsörjning och olika batterityper
Elektronikproduktion, produktionsmetoder och produktionsteknik
Projektdokumentation
Projektkommunikation
Lektionsuppgifter v 43:
Bestäm vilken yrkeskategori du vill designa, konstruera och skapa en riktig prototyp av ett Fashiontech-plagg till. Skriv in vilken yrkeskategori du valt (målgrupp) och skriv vilket klädesplagg (produkt) du vill skapa.
2. Skriv en lista på vilka funktioner du tycker att plagget ska ha. Varje funktion ska lösa någon form av användarbehov. Skriv en funktionsbeskrivning för respektive funktion och vilket behov eller problem den löser. Gör funktionsbeskrivningen hierarkisk. Först en övergripande beskrivning för respektive funktion, sedan en mer detaljerad beskrivning av funktionerna. Vad gör funktionen? Varför ska den finnas? Hur fungerar den? Hur ska funktionen styras?
3. Gör research. Sök efter liknande smarta plagg, wearables eller andra produkter som löser samma problem eller tillgodoser de användarbehov du vill adressera med din Fashiontech-produkt. Samla på dig relevant info som du hittar. Lägg in länkar till dina källor och kopiera text och bilder som du anser kan vara bra att ha. Ta gärna med flera olika varianter av varje konkurrerande befintlig produkt du hittar. Ta reda på hur produkterna fungerar, hur de är uppbyggda, konstruerade, vilka material som används, specifikationer och egenskaper m.m.
4. Skapa en komponent-lista till ditt Fashiontech-plagg. Vilka komponenter tror du kommer behövas för att erhålla önskad funktion? Gör research; sök efter tänkbara komponenter eller moduler som har de funktioner och egenskaper som du tror behövs. Samla på dig info som du hittar. Lägg in länkar till dina källor. Ta med flera olika varianter av varje komponent. Är du osäker på om din produktidé kommer fungera rent konceptuellt så kan du bygga en prototyp och testa funktionen. Vilka delar/komponenter eller moduler kan du använda för att bygga en fungerande konceptprototyp?
5. Arbeta med designen av ditt Fashiontech-plagg. Samla på dig inspirationsbilder och förlagor som du hittar på Internet. Kopiera in dem i din Design-loggbok. Du kan även börja skissa på hur du vill att ditt Fashiontech-plagg ska se ut (uppgift i kursen Bild och form).
6. Skapa en beskrivande och säljande presentation av ditt Fashiontech-plagg-projekt. I detta läge handlar det inte om att göra reklam för en färdig produkt, utan en presentation av din projektidé. Berätta vad du planerar att göra, lära dig och beskriv funktionerna som det smarta plagget ska ha och vilka problem hos kunderna du försöker lösa. Denna presentation ska vi lägga upp på www.fashiontech-projects.se efter höstlovet.
Uppdrag: Ta fram design-idéer till funktionella smarta arbetskläder för olika yrkeskategorier Syfte: Förbättra klädbärarens arbetsdag genom att förbättra klädernas funktion mha t ex sensorer och annan elektronik.
Brainstorming-övning (enskilt) Kom på så många funktioner och exempel som möjligt på smarta kläder för de olika yrkeskategorierna och produktkategorierna nedan. Beskriv vad funktionen ska kunna göra, varför det kan vara bra och vilken typ av komponent som behövs i klädesplagget för att erhålla önskad funktion.
Brandman (exempel: temperatursensor …)
Polis
Byggarbetare
Arbetskläder, skyddsutrustning, knäskydd
Skyddsskor
Skyddshjälmar
Handskar
Vägarbetare
Butikspersonal
Kassörska
Trädgårdsmästare/Parkarbetare (ex färgsensor i handske)
Lastbilschaufför
Förskollärare, hålla koll på barnen (ex: fuktsensor i blöja)
Skolpersonal, lärare (ex se Vinnova-projekt IoT-Hubb skola)
I nedanstående artikel från Quartz kan vi läsa om hur forskare identifierat vad som händer i vår hjärna under djupandning.
Neuroscientists have identified how exactly a deep breath changes your mind
By Moran Cerf, November 19, 2017, Kellogg School of Management, Northwestern University
Breathing is traditionally thought of as an automatic process driven by the brainstem—the part of the brain controlling such life-sustaining functions as heartbeat and sleeping patterns. But new and unique research, involving recordings made directly from within the brains of humans undergoing neurosurgery, shows that breathing can also change your brain.
Simply put, changes in breathing—for example, breathing at different paces or paying careful attention to the breaths—were shown to engage different parts of the brain.
Humans’ ability to control and regulate their brain is unique: e.g., controlling emotions, deciding to stay awake despite being tired, or suppressing thoughts. These abilities are not trivial, nor do humans share them with many animals. Breathing is similar: animals do not alter their breathing speed volitionally; their breathing normally only changes in response to running, resting, etc. Questions that have baffled scientists in this context are: why are humans capable of volitionally regulating their breathing, and how do we gain access to parts of our brain that are not normally under our conscious control. Additionally, is there any benefit in our ability to access and control parts of our brain that are typically inaccessible? Given that many therapies—Cognitive Behavioral Therapy, trauma therapy, or various types of spiritual exercises—involve focusing and regulating breathing, does controlling inhaling and exhaling have any profound effect on behavior?
This recent study finally answers these questions by showing that volitionally controlling our respirational, even merely focusing on one’s breathing, yield additional access and synchrony between brain areas. This understanding may lead to greater control, focus, calmness, and emotional control.
The study, conducted by my post-doctoral researcher, Dr. Jose Herrero, in collaboration with Dr. Ashesh Mehta, a renowned neurosurgeon at NorthShore University Hospital in Long Island, began by observing brain activity when patients were breathing normally. Next, the patients were given a simple task to distract them: clicking a button when circles appeared on the computer screen. This allowed Dr. Herrero to observe what was happening when people breath naturally and do not focus on their breathing. After this, the patients were told to consciously increase the pace of breathing and to count their breaths. When breathing changed with the exercises, the brain changed as well. Essentially, the breathing manipulation activated different parts of the brain, with some overlap in the sites involved in automatic and intentional breathing.
The findings provide neural support for advice individuals have been given for millennia: during times of stress, or when heightened concentration is needed, focusing on one’s breathing or doing breathing exercises can indeed change the brain. This has potential application to individuals in a variety of professions that require extreme focus and agility. Athletes, for example, have long been known to utilize breathing to improve their performance. Now, this research puts science behind that practice.
Beyond studying the ability of humans to control and regulate their neural activity volitionally, the study was also unique in that it utilized a rare method of neural research: directly looking inside the brains of awake and alert humans. Typical neuroscience studies involving humans use imaging techniques (i.e. fMRI or EEG) to infer the neural activity in people’s brain from outside the skull. But studies involving electrodes implanted in humans’ brains are rare. The ability to look inside the humans’ brains allows us to study thinking, deciding and even imagining or dreaming by directly observing the brain. The study subjects in our work were patients who had electrodes implanted in their brain as part of a clinical treatment for epilepsy. These patients were experiencing seizures that could not be controlled by medication and therefore required surgical interventions to detect the seizure focus for future resection.
Given that detection requires the patient to have a spontaneous seizure in order to identify the exact seizure onset location, which can take days, the patients are kept in the hospital with electrodes continuously monitoring their brain activity.
The research findings show that the advice to “take a deep breath” may not just be a cliché. Exercises involving volitional breathing appear to alter the connectivity between parts of the brain and allow access to internal sites that normally are inaccessible to us. Further investigation will now gradually monitor what such access to parts of our psyche that are normally hidden can reveal.
Connector for optional ultrasonic sensor or I2C breakouts (fully compatible with Pimoroni’s Breakout Garden range)
The Microbit pins 0, 1, 2, Gnd and 3V are available for use with croc clips etc.
Lots of mounting holes to create your own “body” for the robot or additional sensors etc.
Makecode extension and micropython examples available
* Wheels need pushing on and optional pen-holder needs screwing in if purchased
Assembly Instructions
Push on the wheels
If you have the pen holder, then use 2 screws to screw the two pillars into the main board from the bottom, then use the remaining 2 screws to screw the top holder into the pillars
Coding Your MiniBit
Microsoft MakeCode
Click any image to enlarge.
To load the extension, select Advanced, then Extensions. Then enter “Minibit” into the search box and press Enter. If that doesn’t find it (there are sometimes earch glitches) you can enter the full URL into the search box: “https://github.com/4tronix/MiniBit”
Once loaded, you will have a MiniBit menu item with 4 sub-folders:
Motor Blocks
The first command “Drive at speed 600” will set both motors to speed 600. If you do nothing more, the MinBit will continue going forward forever.
The speed value can be from -1023 (full speed reverse) to 1023 (full speed forward). Setting the speed to 0 will stop the motors
There is also a block for spinning – left motor and right motor turn at the same speed but in opposite directions.
Both the drive and spin blocks have a paired block that will drive (or spin) for a selected amopunt of time and then stop
There are two ways of stopping. Coasting to a stop or braking. If you set the speed to 0 or use the “stop with no brake” command, then it will stop gently over the coourse of a second or so 9depending on initial speed). If you use the “stop with brake” block (or the drive/spin for a time block) then it will stop almost immediately.
Finally, you can drive each motor individually. For instance if you set the left motor to drive at 600 and the right motor to drive at 1000, then it will perform an arc towards the left
LED Blocks
You can use these blocks to set and clear one or all the LEDs.
Note that the MiniBit defaults to automatically updating the LEDs whenever any change is made see the “more…” section to learn how and why to change this behaviour
The LEDs on the MiniBit are labelled from 0 to 3. Use these numbers in the Makecode blocks to change the colour. eg setting LED 1 to Purple could be done like this:
The default brightness level is 40. This is plenty bright enough for most uses, saves damaging eyes, and reduces battery consumption. If required you can change the brightness from 0 up to 255
Sensor Blocks
Only one sensor in here; the ultrasonic distance sensor. You can get the values to the nearest object in cm, inches or microseconds
More Blocks
These are the advanced usage blocks. Most students will not need to use them.
Set update mode is used to switch between automatic LED updates or manual LED updates. The default is for automatic updates: every change to the LEDs results in all the LEDs being written to with the updated values. This is easy to understand, but it does mean that when making a lot of changes it can slow things down considerably. If doing that, it is best to use Manual update mode, make all the changes required, then use the show LED changes block to make all the updates in one go.
Rotate LEDs block will move the colour in LED 0 to LED 1, LED1 to LED2, LED2 to LED3 and LED3 to LED0. If done repeatedly, with a delay between each one, it will show the lED colours rotating around all the 4 LEDs.
Shift LEDs block will move LED0 to LED1, LED1 to LED2 and LED2 to LED3. It will blank LED0. So all the colours will disappear one at a time from 0 to 3
You can also create your own colours and replace the fixed list of colours in any command using the convert from red, green, blue block. For example, to set LED0 to a blue-green colour:
Programming in microPython
Driving Motors
The motors use 2 pins each to determine the speed and direction. In microPython we use write_analog ( ) to set the first pin to a value between 0 and 1023 and the second pin to 0 in order to go forward. To reverse, we swap the pins so that the first pin is set to 0 and the second pin is set to the value.
On the MiniBit the left motor uses pins 12 and 8, and the right motor uses pins 16 and 14.
So to move the left motor forwards at speed 600:
pin12.write_analog(600) pin8.write_digital(0)
And to move the right motor in reverse at speed 450:
pin16.write_digital(0) pin14.write_analog(450)
To stop with no brake, use write_digital ( ) to set both pins to 0. To stop with brake, set both pins to 1. eg. stop left motor with coasting and right motor with brake:
pin12.write_digital(0) pin8.write_digital(0)
pin16.write_digital(1) pin14.write_digital(1)
So a complete, but fairly useless, program to drive the motors for 2 seconds and then stop quickly, would look like this:
from microbit import * pin12.write_analog(600) pin8.write_digital(0) pin16.write_analog(600) pin14.write_digital(0) sleep(2000) pin12.write_analog(0) # temporary fix for python bug pin12.write_digital(1) pin8.write_digital(1) pin16.write_analog(0) # temporary fix for python bug pin16.write_digital(1) pin14.write_digital(1)
Note the 2 lines that write_analog(0) before swapping a pin from analog to digital. These are required until a fix is obtained for the python PWM driver continually updating the pin type to analog
Lighting the LEDs
This uses the standard neopixel code, with the LEDs connected to Pin 13.
At the top of your program add import neopixel then:
leds = neopixel.NeoPixel(13, 4)
leds is then an array of all 4 LEDs. leds[0] refers to the LED 0 and leds[3] refers to LED3. Each element of the array is a set of 3 numbers representing the Red, Green and Blue values (each 0..255) for that LED. So to set LED2 to Blue:
leds[2] = (0, 0, 255)
All this does is update the array. To show the new value of the array, we need to call the show ( ) function as follows:
leds.show ( )
Reading the Ultrasonic Distance Sensor
The ultrasonic sensor breakout is on pin15.
The concept is simple: send an ultrasonic pulse out, then time how long it takes to return. Using the speed of sound and some maths, we can then work out the distance. The following complete program has 2 parts to it: a function sonar ( ) which returns the distance to the object, and the main code in a loop which continually prints the distance. We also need to import the utime library:
from microbit import * from utime import ticks_us, sleep_us
def sonar(): pin15.write_digital(1) # Send 10us Ping pulse sleep_us(10) pin15.write_digital(0) pin15.set_pull(pin15, NO_PULL) while pin15.read_digital() == 0: # ensure Ping pulse has cleared pass start = ticks_us() # define starting time while pin15.read_digital() == 1: # wait for Echo pulse to return pass end = ticks_us() # define ending time echo = end-start distance = int(0.01715 * echo) # Calculate cm distance return distance
(Reuters) – Apple Watch kunde upptäcka oregelbundna hjärtpulsfrekvenser som kan signalera behovet av ytterligare övervakning för att upptäcka ett allvarligt hjärtrytmproblem, enligt data från en stor studie finansierad av Apple Inc, som visar en potentiell framtida roll för bärbar konsumentelektronik (s k wearables) inom vården.
Forskare hoppas att tekniken kan hjälpa till vid tidig upptäckt av förmaksflimmer eller hjärtflimmer (eng. Atrial Fibrillation, AF), den vanligaste formen av oregelbundna hjärtslag. Patienter med obehandlad förmaksflimmer har fem gånger större sannolikhet att drabbas av stroke.
Resultat från den största förmaksflimmer-undersöknings- och detekteringstudien med över 400 000 Apple Watch-användare som var inbjudna att delta, presenterades på lördagen den 16 mars 2019 vid American College of Cardiology-mötet i New Orleans.
Av de 400 000 deltagarna fick 0,5 procent, cirka 2000 personer, meddelanden om en oregelbunden puls via appen i deras smarta klockor. Dessa personer fick sedan bära en mobil EKG-apparat (elektrokardiografi) för efterföljande detektion av förmaksflimmerepisoder.
En tredjedel av dem vars klockor upptäckte en oregelbunden puls bekräftades ha förmaksflimmer med hjälp av EKG-tekniken, sa forskarna.
84 procent av de oregelbundna hjärtpulsmeddelandena bekräftades senare ha varit hjärtflimmer-episoder, visade data.
”Läkaren kan använda informationen från studien, kombinera den med sin bedömning … och sedan styra kliniska beslut om vad man ska göra med en varning”, säger Dr. Marco Perez, en av studiens ledande utredare från Stanford School of Medicine.
Studien fann också att 57 procent av deltagarna som fick en alert på sin smarta klocka sökte läkarvård.
För företag som Apple ger den här typen av data en kraft i en ny riktning in i sjukvårdsbranschen. Apples nya smarta klocka, Apple Watch Series 4, som blev tillgänglig först efter studien började, och som alltså inte användes i den här studien, har förmågan att ta ett EKG (elektrokardiogram) för att upptäcka hjärtproblem. Den produkten krävde ett godkännande från US Food and Drug Administration (FDA).
Dr. Deepak Bhatt, en kardiolog (typ av hjärtspecialist) från Brigham and Women’s Hospital i Boston som inte var inblandad i försöken, kallade den en viktig studie, eftersom användningen av denna typ av bärbar teknik bara kommer att bli mer utbredd. ”Studien är ett viktigt första steg för att ta reda på hur kan vi använda dessa teknologier på ett sätt som bygger på bevis,” han sa.
Forskare uppmanar till försiktighet av läkare att använda data från konsumentprodukter vid behandling av patienter. Men de ser också stor framtidspotential för denna typ av teknik.
”Förmaksflimmer är bara början, eftersom denna studie öppnar dörren för att ytterligare undersöka bärbar teknik och hur de kan användas för att förebygga sjukdom innan den slår ut,” säger Lloyd Minor, dekan för Stanford School of Medicine.
Uppgiftskod: AWUOHISAS-TKSVBISH
Diskussionsfrågor:
Syftet med följande diskussionsfrågor är att låta eleverna arbeta språkutvecklande med artikeln där de tränar, utvecklar och visar sina kunskaper och förmågor inom läsförståelse, att ta del av fakta, uttrycka sig i tal och skrift, argumentera, resonera, beskriva, förklara och tolka olika typer av texter. De kan även källkritiskt granska fakta och påståenden, hänvisa till olika källor, reflektera och ta ställning till egna personliga val gällande användningen av tekniska hjälpmedel för att främja vård och hälsa. Lämpliga arbetsmetoder kan vara t ex EPA (Enskilt – Par – Alla), jobba i basgrupper eller individuellt.
(TkBiSv) Vad handlar artikeln om? Sammanfatta det viktigaste.
(TkBiSv) Vad är nyheten i artikeln?
(TkBiSv) Är det en positiv, negativ eller neutral nyhet? Finns det flera perspektiv?
(TkBiSv) Vem ligger bakom artikeln? Vem har skrivit den, vem är avsändaren, vem står som garant för faktan?
(TkBiSv) Är artikeln trovärdig? Finns det några tveksamheter i artikeln? Motivera ditt svar med sakliga argument.
(Sv) I vilken mån anser du att det är en argumenterande, beskrivande, förklarande, debatterande, påverkande, informerande eller problematiserande artikel?
(TkBiId) Ge exempel på fler liknande produkter som kan användas för att mäta puls och hjärtrytm.
(TkBiIdShSv) Vilka fördelar kan det finnas med att använda den här typen av teknik, som privatkonsument och inom vården?
(TkBiIdShSv) Vilka eventuella nackdelar och risker kan det finnas med att använda den här typen av teknik, som privatkonsument och inom vården?
(Tk) Har du själv, eller någon du känner, erfarenhet från att använda den här typen av teknologi?
(Tk) Känner du någon person som skulle ha behov av att använda den här typen av teknologi?
(TkBi) Skulle du själv kunna tänka dig att använda den här typen av teknologi för att få reda på om du har eller är på väg att få hjärtproblem?
(TkBiShSyv) Vad behöver man kunna för att utveckla en sådan här produkt?
(TkBiId) Vad behöver man kunna som konsument för att ha användning och nytta av en sådan här produkt?
(TkBiSyv) Vad behöver vårdpersonalen kunna för att ha användning för en sådan här produkt inom sjukvården?
(TkBiIdShSyv) Hur tror du att den här typen av produkter och teknologier kommer förändra vår hälsa, våra beteenden och framtidens sjukvård?
(BiSvIdTk) Vad är puls? Var på kroppen kan man mäta puls och hur? Vad är hjärtrytm och vad innebär förmaksflimmer? Vad är stroke?
(Ma) Hur många procents större risk har personer med obehandlad förmaksflimmer att drabbas av stroke?
(MaSv) Hur många personer i undersökningen bekräftades ha förmaksflimmer med hjälp av EKG-tekniken?
(Ma) Skapa visuella illustrationer till statistiken som presenteras i texten. T ex cirkeldiagram eller stapeldiagram.
(BlTk) Skapa en annons eller ett reklamblad för en helt ny, tidigare okänd produkt, med den här teknologin och funktionen.
(SvBiTk) Skriv en kritiskt argumenterande text som tar avstånd från att använda Apple Watch specifikt, eller den här typen av produkter och teknologier generellt för att detektera och förutspå sjukdomar och kartlägga vår hälsa.
(BiSyv) Om du är intresserad av att veta mer om vad EKG är och hur man tolkar EKG kan du t ex läsa första kapitlet i kursen ”Introduktion till hjärtfysiologi och elektrokardiologi”. Webbsidan ekg.nu är en komplett e-bok och webbutbildning i klinisk EKG-diagnostik som vänder sig till läkare, sjuksköterskor, ambulanspersonal, studenter och forskare som vill lära sig EKG-tolkning. Sidan används på samtliga medicinska universitet och universitetssjukhus, så funderar du på att studera till ett vårdyrke så kan du få en inblick i vad du kommer att få lära dig.
Kopplingar till LGR 11: Årskurs: 7-9 Ämne: Tk teknik, Sv svenska, Sh samhällskunskap, Bi biologi, En Engelska, Ma matematik, Id Idrott och Hälsa, Bl Bild, Syv Studie och Yrkes-vägledning. Syftestext: Centralt Innehåll: Kunskapskrav: