Konstruktions- och CAD-uppgifter kopplat till TIS-projekt Oceanpiren. OBS! De olika uppgifterna i listan nedan behöver inte slutföras sekventiellt i ordning. Vi kommer jobba med de olika uppgifterna vid flera olika lektionstillfällen. Använd listan som checklista och vid din planering under projektet.
TE18DP kurs CAD 1 och Konstruktion 1
Leta efter och hitta den lägenhet som du ska rita planritning till och göra inredningsdesignförslag till. Alla lägenhetsnummer finns representerade i bofaktabladen om Brf Oceanpiren från Midroc.
Skapa separata bildfiler för de olika ritningarna av din lägenhet som finns i bofaktabladets pdf.
Skapa en planritning i 2D i Fusion 360 för din lägenhet.
Identifiera och numrera alla olika väggsegment i din lägenhet.
Sammanställ en lista på alla ingående väggsegment och ange vilken typ av vägg det är enligt följande kategorier: * Bärande ytterväggar * Lägenhetsskiljande väggar * Bärande innerväggar * Icke bärande innerväggar * Våtrumsväggar
Gör en CAD-ritning på stomsystemets uppbyggnad för din lägenhet i Fusion 360. Vi utgår till att börja med ifrån att väggarna byggs i form av en trästomme enligt principritningar för de olika väggtyperna enligt lista ovan.
Skapa en material-/komponentlista (BOM) för bygget av din lägenhet i Excel.
Skapa en kostnadskalkyl för materialet till bygget av din lägenhet i Excel.
Skriv en lista på vilka konstruktionselement du tror att primärstommen till din lägenhet består av på riktigt.
Skriv en lista på vilka konstruktionselement du tror att sekundärstommen till din lägenhet består av på riktigt.
Beräkna några laster för bärande delar i din lägenhet.
Munday, som nyligen anslöt till UC Davis från University of Maryland, utvecklar prototyper av dessa ”nattsolceller” som kan generera små mängder elektrisk ström. Forskarna hoppas kunna förbättra enhetens effekt och effektivitet.
Munday sa att processen liknar hur en normal solcell fungerar, men omvänt. Ett objekt som är varmt jämfört med omgivningen kommer att stråla ut värme som infrarött ljus. En konventionell solcell är kall jämfört med solen, så den absorberar ljus.
Rymden är verkligen kall, så om du har ett varmt föremål och riktar det mot himlen, kommer det att stråla ut värme mot rymden. Människor har använt detta fenomen för nattkylning i hundratals år. Under de senaste fem åren, sade Munday, har det varit mycket intresse för enheter som kan göra detta under dagen (genom att filtrera bort solljus eller rikta bort från solen).
Genererar kraft genom att stråla ut värme Forskarna beskriver sin uppfinning som i det närmaste en omvänd solpanel. Istället för att alstra elektricitet genom att fånga solstrålar, ska de alstra el genom att sända ut värmestrålning i rymden. Det finns redan liknande enheter, s k termoradiativ cell, som genererar ström genom att utstråla värme till omgivningen. Forskare har undersökt att använda dem för att fånga spillvärme från motorer.
”Vi tänkte, om vi tog en av dessa enheter och lägger den i ett varmt område och pekade det mot himlen,” sa Munday. Denna termoradiativa cell som riktas mot natthimlen skulle avge infrarött ljus eftersom det är varmare än yttre rymden.
”En vanlig solcell genererar el genom att absorbera solljus, vilket får en spänning att dyka upp över enheten och en ström att flöda. I dessa nya enheter släpps ljus istället ut och strömmen och spänningen går i motsatt riktning, men du genererar fortfarande ström, ”sa Munday. ”Du måste använda olika material, men fysiken är densamma.”
Enheten fungerar också under dagen om du vidtagit åtgärder för att antingen blockera direkt solljus eller rikta bort det från solen. Eftersom denna nya typ av solcell potentiellt skulle kunna fungera dygnet runt är det ett spännande alternativ för att balansera elnätet över dygnet mellan dag och natt.
Forskarna vid UC Davis ska nu konstruera små prototyper av sina anti-solceller för att testa hur väl de fungerar och hur hög effekt de kan få ut.
I Sverige slänger vi i genomsnitt knappt åtta kilo kläder i soporna varje år. En hel del av dem skulle kunna återanvändas men än så längre saknas bra metoder, framför allt för återvinning i större skala. Men det pågår flera projekt för att ta fram sådana metoder. Ett av dem är projektet WargoTex Development som startade 2018 i Vargön utanför Vänersborg och ska pågå i två år.
– Mycket textil återanvänds inte därför att det saknas bra funktioner för sortering, säger Maria Ström, verksamhetsledare på Wargön Innovation som driver projektet.
Utvecklingsprojektet, som fått stöd av Energimyndigheten, samlar 25 samarbetspartner under ett tak. Bland dem högskolor, kommunala energibolag, välgörenhetsorganisationer, återvinningsföretag och klädkedjor.
– Vi vill förstå hur man kan sortera textilierna mer effektivt. Vi har fått lokaler med en processhall där vi ska testa olika saker. Vi har fem demoprojekt, bland dem ett som tittar på robotteknik och ett som håller på med industriell redesign, säger Maria Ström.
Behövs industriell kapacitet
Projektet kom enligt henne till därför att flera olika aktörer inom återvinning hade nya idéer om vad man kan göra med uttjänt textil, men de hade insett att det i Sverige saknas industriell kapacitet för textilsortering.
– Vi såg en lucka just i sorteringsfunktionen. Om ett stort företag ser att de skulle kunna göra en produkt med återvunnen textil, då kanske de vill ha 10 000 ton på ett år, men den volymen finns inte framme i dag, säger hon.
I sorteringen gäller det att skilja ut de textilier som kan återanvändas – till exempel klädesplagg – från de uttjänta som ska återbrukas, det vill säga förvandlas till ny textilråvara eller annan råvara.
Råvaran måste sorteras
– Får man in en stor hög med textilier kan där finnas allt från urtvättade barntröjor till Armanikostymer. Det pågår många projekt inom det här området, det finns till exempel minst två svenska projekt som arbetar med att separera bomull och polyester. Men allt kräver att det finns en sorterad råvara, säger Maria Ström.
Det finns många aktörer som arbetar med återvinning och återbruk av textilier på olika sätt. Därför är det så många olika samarbetspartner med i projektet i Vargön – alla kan bidra med sina erfarenheter och kunskaper.
– Vi behöver också utveckla textilinsamlingen. Andra länder, som Tyskland, Frankrike och våra nordiska grannländer samlar in mer än vi. Alldeles för mycket textil slängs fortfarande, säger Maria Ström.
”En utmaning för oss som medborgare”
Hon framhåller att vi i Sverige har en hög konsumtion av kläder.
– Mycket blir bara liggande, ibland utan att man ens tagit bort prislappen. Det här är en utmaning för oss som medborgare – att handla mer second hand, vara rädda om våra kläder, lämna ifrån oss det vi inte använder.
Design- och konstruktionsuppgift: (Kurser: Design 1, Konstruktion 1, Teknik 1, Uppfinnarresan)
Uppfinn en fungerande klädsorteringsmaskin.
Vad behöver maskinen kunna göra? Förklara och beskriv sorteringsprocessen steg för steg.
Skapa en funktionsbeskrivning som förklarar hur sorteringsanläggningen eller din maskin fungerar och vilka delar den består av.
Designa, skissa, rita och konstruera en modell eller prototyp.
Vad ska vi lära oss inom detta? (i kursen Konstruktion 1)
Några vanliga konstruktionsmaterial och konstruktionselement för byggnation
Element i den bärande stommen och några olika konstruktionsexempel
Faktorer att beakta vid val av bärande stomsystem
Tre metoder att dimensionera en bärande konstruktion.
Några beräkningar av laster
Stomsystemets uppbyggnad vid byggnation
Den bärande konstruktionen kan ofta delas in i en primär- och en sekundärstomme. Stomsystemet i en byggnad har till uppgift att göra byggnaden stabil och hållbar för alla yttre belastningar som t ex vind och snölaster. Givetvis behöver man även ta hänsyn till de ingående materialens egenvikt vid dimensionering av stommen.
Den primära konstruktionsstommen är den som primärt för ned lasterna till grunden.
Den sekundära konstruktionsstommen utgörs av konstruktionselement vars uppgift är att föra över lasterna till primärkonstruktionen.
Primärstommen utgörs av takbalkar, gavelbalkar, huvudpelare och gavelpelare. Till primärstommen räknas också eventuella vindförband i väggar och tak samt takplåten om denna används som stabiliserande skiva.
Till sekundärstommen räknas takplåt, takåsar, väggplåt och väggreglar, vilka även kan kallas sekundärkonstruktioner.
Vanliga konstruktionsmaterial och konstruktionselement för byggnation
I Sverige är det vanligaste materialet i byggnaders stommar olika typer av trä. För småhus utgör oftast både primär- och sekundärstommen träkonstruktioner eller en kombination av trä och stål. I större fastigheter med flera våningar, som flerbostadsfastigheter eller kontorsfastigheter, så utgörs den bärande primärstommen oftast istället av stålbalkar eller betong för att klara av att bära de betydligt större lasterna som en stor och hög byggnad belastas med. Intresset för att även bygga primärstommen i flervåningshus av trä har dock på senare år ökat pga miljö- och klimatskäl, vilket vi kommer studera ett antal exempel på.
De icke bärande innerväggarna som delar in de olika rummen i lägenheterna och lokalerna brukar vara konstruerade av träreglar eller stålreglar och gipsskivor.
Konstruktionsexempel för väggar av trä
Yttervägg – generella lösningar
Ytterväggen ingår vanligen i byggnadens stomme. Den byggs oftast upp med regelverk såväl när det gäller bärande som icke bärande ytterväggar. Även korslimmat trä, KL-trä förekommer som stommaterial, särskilt i flervånings trähus.
Yttervägg med liggande panel
Ingående material
Liggande panel.
Spikläkt.
Luftspalt/kapillärbrytande spalt.
Vindskydd.
Yttre isolerskikt fäst med distanshylsor.
Vertikal väggregel.
Värmeisolering.
Ångspärr.
Horisontell väggregel, så kallat installationsskikt.
Invändig väggbeklädnad.
Material
Spikläkt: läkt 34×45 mm, sort G4-3 eller bättre.. Vertikal och horisontell väggregel: konstruktionsvirke 45 mm. Vindskydd: skivmaterial, utvändigt godkänd och fukttålig skiva. Värmeisolering: skivor av mineralull. Ångspärr: åldringsbeständig plastfolie. Invändig beklädnad: beklädnadsskivor eller träpanel.
Liggande profilerad panel av trä utomhus: tjocklek ≥ 22 mm, bredd <113 mm (täckande bredd). Fästdon: varmförzinkad trådspik 75-2,8 för bräder < 32 mm, varmfözinkad trådspik 100-3,4 för bräder ≥ 32 mm.
Lättbalkar och lättreglar
Lättbalkar och lättreglar är goda exempel på hur olika trämaterial kan kombineras i en produkt.
Vanligast är balkar och reglar med I-format tvärsnitt. Dessa är optimerade för böjbelastningar. I flänsarna som ska kunna ta upp tryck- respektive dragkrafter används konstruktionsvirke eller LVL (Laminated Veneer Lumber). I livet, vars främsta uppgift är att ta hand om skjuvkrafter, används olika slags skivmaterial. I Sverige används företrädesvis träfiberskiva medan OSB (Oriented Strand Board) dominerar i Nordamerika. I-balkar introducerades i Sverige i mitten av 1970-talet som ett alternativ till konstruktionsvirke. I-balkar kan fås med större balkhöjder än vad som är möjligt med massivt virke. I-balkarna har också fördelen att vara lätta och förhållandevis formstabila. I Nordamerika ersätter I-balkar massivt trä i allt större utsträckning.
För användning och dimensionering hänvisas till tillverkarens anvisningar och produktinformation. Lättreglar och lättbalkar ska vara CE-märkta.
Uppdatering 2020-02-04: Enormt gensvar på Södras nyhet om lösning för återvinning av textilier! När Södra i slutet av oktober presenterade sin världsunika lösning för textil återvinning – OnceMore™ lät inte reaktionerna vänta på sig. Det blev ett omedelbart genomslag och timmarna efter nyheten släppts strömmande förfrågningar in från hela världen. – Vi trodde att det skulle vara en stor nyhet men blev nog ändå lite chockade över gensvaret. Det visar vilket enormt intresse det är i återvinningsfrågan, säger Helena Claesson, projektledare Södra. https://www.bioinnovation.se/nyheter/genombrott-for-sodra-med-textilatervinning-i-industriell-skala/ Skogindustrikoncernen Södra, som även är Sveriges största skogsägarförening, har tagit fram en ny metod för att återvinna fibrer från blandmaterial för att tillverka nya textilier.
Flera miljoner ton textilier slängs varje år. Mycket på grund av det inte har funnits någon effektiv teknik för återvinning av textilier i stor skala. En utmaning kring att lyckas med en sådan process ligger i alla materialblandningar som först behöver kunna separeras från varandra.
Men nu meddelar Södra att de har nått ett genombrott i att återvinna textilier som är gjorda av blandmaterial. Med hjälp av ny teknik kan bolaget i industriell skala separera polyester från bomull, viskos eller lyocell. De uppdelade fibrerna kan sedan användas för att tillverkning av nya kläder.
– Det speciella är att vi kan ta hand om blandmaterial och inte har några begränsningar i polyesterhalten. Vi jobbar redan i industriell skala och behöver inte bygga någon ny fabrik utan kan justera befintliga anläggningar, säger Helena Claesson i en kommentar till DI, som har lett projektet på Södra.
Produktionen kommer att starta på en låg nivå om 30 ton under innevarande år. Men målsättningen på sikt är att komma upp i 25 000 ton textilier för inblandning i massatillverkningen. Enligt Södra själva är detta ett världsunikt genombrott, vilket kan göra det möjligt att mer textilier återvinns i stället för att gå till förbränning i framtiden.
Bakgrund: I slutet av 2017 presenterades en världsunik återvinningsprocess för textilier – Blend Re:wind. För första gången finns nu en metod som lyckas ta till vara på både bomullen och polyestern från tyg med polyester/bomullsfiberblandning. Processen har tagits fram inom forskningsprogrammet Mistra Future Fashion av forskare vid Chalmers och RISE tillsammans med skogsindustriföretaget Södra.
Denna revolutionerande process är resultatet av sex års forskning och är avgörande för storskalig kommersialisering och framtida produktion av återvunnet tyg.
Att återvinna textil till textil i god kvalitet och känsla är en komplex uppgift. Kläder består av olika material och fiberblandningar, och för att kunna återvinna dem krävs utveckling av nya teknologier och innovationer. Idag uppskattas den globala återvinningen av textil tillbaka till textil vara nästintill obefintlig. Majoriteten av uttjänta kläder förbränns eller läggs på deponi. Textilavfall är därför en outnyttjad resurs för modeindustrin som är i stort behov av mer hållbara materialalternativ.
Blend Re:wind-processen har tagits fram inom forskningsprogrammet Mistra Future Fashion av forskare vid Chalmers och RISE tillsammans med skogsindustriföretaget Södra. Bomull- och polyesterfibrer separeras i en kemisk process och frigörs till tre rena produkter; bomull och polyesterns två byggstenar, en i fast och en i flytande form. Bomullen återvinns sen till nya viskosfilament av hög kvalitet och polyestern kan åter byggas upp till nya starka fibrer. Detta ger cirkulära produktströmmar och innebär att vi kommer närmare lösningen att sk ”close the loop” för textil.
Huvudfokus har varit på återvinning av bomull och att producera nya högkvalitativa viskosfilament från den återvunna bomullen. Bomull är en naturlig cellulosabaserad råvara, med hög miljöbelastning. Därför är det viktigt att så mycket som möjligt återanvända och återvinna denna unika fiber som naturen framställer. Projektet har letts av Dr Hanna de la Motte som förklarar:
– De olika fibrerna i tyget måste separeras innan de återvinns. Polyestern som är en syntetisk fiber är generellt enklare att hantera än de komplexa naturliga bomullsfibrerna, men tack vare nationell spetskunskap inom cellulosakemi har vi hittat en lösning som även tar till vara på bomullen. Därför är vår separationsprocess, med cirkulära lösningar för båda materialen, ett viktigt bidrag till de framtida globala systemen för textilåtervinning. Det behövs för att kunna möjliggöra cirkularitet för mode och textilier.
Ett gediget doktorandarbete av Dr Anna Palme ligger till grund för utvecklingen. Att förstå hur bomull påverkas av slitage har varit A och O i projektet och därför har hon gjort omfattande studier av slitna lakan från sjukhus innehållande bomull och polyester. Från den bomull som utvunnits ur de slitna lakanen har därefter fina viskosfilament kunnat framställas.
En stor fördel med Blend Re:wind-processen är att separationen tar hänsyn till befintliga industrier. Målet har hela tiden varit att integrera med befintlig skogs- och kemiindustri eller andra återvinningsinitiativ. Anna Palme förtydligar:
– Viskosen har samma kvalitet som filament gjorda av kommersiell dissolvingmassa från skogsindustrin och som används i viskosproduktion. Det innebär att materialet förhoppningsvis enkelt kan integreras i dessa processer. Den separerade polyestern kan polymeriseras till hög kvalitet och är lämpliga för integration i befintlig industri. Här finns redan etablerade samarbeten med industriaktörer och experiment utförs.
– Separationen använder kemikalier som redan idag nyttjas i både skogs- och viskosindustrin, vilket därför underlättar möjliga integreringar, detta för att minimera både miljömässiga och ekonomiska kostnader. Att gå från labb till uppskalning är dyrt och är därmed vår största utmaning just nu. Med möjlighet att integrera processen i befintlig industri hoppas vi kunna hantera denna utmaning bra.
Ett annat viktigt krav har varit att Blend Re:wind ska ha en bra miljöprestanda. Forskningsprogrammet Mistra Future Fashion handlar framförallt om att finna lösningar som ger en hållbar modeindustri. Separationsprocessen uppfyller dessa krav främst genom att vara vattenbaserad och består av vanliga, billiga bulkkemikalier och en katalysator.
Framtiden för textilåtervinning ser mer ljus ut än någonsin. Det genomförs forskning och global utveckling som aldrig förr. Hanna de la Motte berättar:
– Det tog sex år att komma till denna punkt då vi ser lovande resultat i vår process för framtida textilåtervinning. Men vi är inte ensamma, det finns många briljanta återvinningsinnovationer och framtiden behöver mer forskning inom området. Gällande Blend Re:wind är vår bedömning är att den har stor potential på den globala marknaden i framtiden.
Kontakta för mer information:
Dr Hanna de la Motte, temaledare Mistra Future Fashion och forskare vid RISE Research Institutes of Sweden, hanna.delamotte@ri.se
Mistra Future Fashion är ett forskningsprogram om hållbart mode, och undersöker hur dagens modeindustri och konsumtion kan bli hållbar. Vägledda av principerna för cirkulär ekonomi, arbetar programmet tvärvetenskapligt och involverar 50+ partners från hela ekosystemet för mode. Med ett unikt systemperspektiv kombineras nya metoder för design, produktion, användning och återvinning med relevanta aspekter som nya affärsmodeller, politik, konsumentbeteende, livscykelanalys, systemanalys, kemi, teknik mm. Forskningsstiftelsen MISTRA är initiativtagare och primär finansiär för åren 2011-2019. Läs mer på www.mistrafuturefashion.com
FAKTA om Blend Re:wind processens innehåll:
Högkvalitativa återvunna filament: Huvudfokus har varit på återvinning av bomull och att producera nya högkvalitativa viskosfilament från den återvunna bomullsströmmen, vilket är avgörande för vidare industriell bearbetning mot återvunnet tyg.
Framgångsrik fullständig återvinning av polycottonblandningar med rena produktflöden och med högt materialutbyte: Viskosfilament har framgångsrikt
erhållits från den bomull som utvunnits från slitna polycottonlakan. Filamenten har samma kvalitet som filament gjorda av kommersiell dissolvingmassa som används i kommersiell viskosproduktion. Den separerade resten från polyester, polyestermonomerer, kan polymeriseras till polyester av hög kvalitet. Dessa monomerer är lämpliga för integration med befintliga kemikalieprocesser – här är samarbete med industriaktörer redan etablerat och experiment utförs.
God genomförbarhet med befintliga industriprocesser: En stark fördel med Blend Re:wind processen är att separationen tar hänsyn till befintliga industrier, och målet är integration med befintlig skogs- och kemisk industri eller återvinningsinitiativ. Separationen använder kemikalier som redan används i den svenska skogsindustrin och i viskosindustrin för att underlätta möjliga integreringar.
Stark miljöprestanda: Det är en lämplig separationsprocess eftersom den är vattenbaserad och använder endast vanliga, billiga bulkkemikalier och en katalysator.
Om forskningen och Blend Re:wind processen:
Blend Re:wind initierades 2011 och har utvecklats inom det svenska Mistra Future Fashion av parterna Chalmers Tekniska Högskola, RISE Research Institutes of Sweden och Södra.
Arbetet har letts av Dr Hanna de la Motte, temaledare för tema 4, Återvinning, inom Mistra Future Fashion och forskare vid RISE. Hennes kompetens ligger inom cellulosakemi och kemisk återvinning av textil där hon är en internationellt erkänd expert. Andra nyckelpersoner involverade är Dr Anna Palme, forskare och ansvarig för den tekniska utvecklingen på Chalmers och Dr Harald Brelid vetenskaplig rådgivare från Södra.
Projektets budget är 6 miljoner kr och har finansierats inom Mistra Future Fashion med medel från forskningsstiftelsen MISTRA, kompetensplattformen Cirkulär Ekonomi på RISE, samt in-kind bidrag från involverade partners.
Projektet har bidragit med ny grundläggande kunskap inom kemisk textilåtervinning och med flertalet vetenskapliga publikationer:
Avhandlingar
Recycling of cotton textiles: Characterization, pretreatment, and purification
Resultaten har också belönats med flertalet utnämningar:
Renova miljöstipendium 2017
Delas ut årligen och syftar till att stimulera forskning inom miljö- och återvinningsområdet.
Till Anna Palme – Annas forskning handlar om att återvinna textilier av blandmaterialet polyester/bomull, ett material som bland annat används i lakan för sjukhus. Blandtextilier av polyester och bomull ska inte slängas utan återvinnas till nya textilier! Det är målet för Anna Palmes forskning.
Det händer mycket i Oceanhamnen i Helsingborg nu. Oceanhamnen är första etappen av stadsutvecklings-projektet H+ i Helsingborg som fram till år 2035 ska omvandla en miljon kvadratmeter gammalt hamn- och industriområde till de fyra stadsdelarna Oceanhamnen, Universitetsområdet, Husarområdet och Gåsebäck och ge plats för 10 000 nya invånare. Syftet är att skapa framtidens smarta hållbara stad och då behöver vi självklart involvera eleverna på Innovationsgymnasiet i Helsingborg!
Alla viktiga projekt behöver en flygande start! Först ut på bollen är teknikeleverna i årskurs 2 (TE18DP) som läser Design, Konstruktion, CAD och produktutveckling som, förutom att skapa 3D-ritningar med inredningsförslag till blivande bostadsrätter, kontor och hotell, även kommer bygga fysiska 3D-modeller av de nya bostäderna. Teknikeleverna i årskurs 1 (TE19) är också med i projektet och kommer jobba med fasadritningar och bygga skalenliga modeller av fastigheternas fasader inom kursen Teknik 1. TE18DP ska även designa och konstruera förslag på smarta, kompakta och mobila modulära studentbostäder av återbruksmaterial. Som en naturlig del i projektet väver vi in innovativa tekniska lösningar för smarta hem, intelligenta byggnader med lokal energiåtervinning och system för användarcentrerad feedback i syfte att minska varje individs energi- och vattenförbrukning och avfallsmängd. För de projekt och produktidéer som rör IoT (Internet Of Things) och digitala lösningar kommer våra elever (TE18IM) som läser Dator- och Nätverksteknik, Programmering, Webbutveckling och certifieringskursen Cisco IoT Fundamentals Connecting Things involveras. Genomgående för uppdragen är tillämpning av principer för hållbar design och användandet av moderna professionella digitala design- och konstruktionsverktyg som Blender, Sketchup, Fusion 360, Meshroom, Autodesk Revit, Unity, Unity Reflect samt 3D-skrivare och återbruksmaterial för att skapa skalenliga fysiska modeller. Under våren kommer natureleverna (NA19), som en del av projektet ”TIS-Tema Vatten”, titta närmare på den nya innovativa vattenreningsanläggningen Reco Lab (se mer info nedan) som är en modell för framtidens avloppssystem som håller på att byggas i Oceanhamnen.
Oceanhamnsområdet är just nu en inhägnad byggarbetsplats där förvandlingen till en levande stadsdel med de första 450 bostäder pågår för fullt så att de första invånarna kan flytta in redan nästa år. Här byggs också restauranger, handelsyta och Oceanhamnen Waterfront Business District, ett nytt affärsdistrikt med 32 000 kvadratmeter nya kontor. Området får endast besökas av behörig personal med ID06 passerkort, så vi har inte möjlighet att gå dit och göra fältstudier på nära håll med eleverna. Så för att få en inblick i hur arbetsprocesserna och bygget fortskrider får vi ta till andra kreativa metoder. I första hand söker vi samarbeten med de aktörer som är inblandade i olika delar av Oceanhamnen-projektet.
För att få lite perspektiv på projektet, fågelperspektiv alltså, så lyfte jag blicken och flög runt ett par varv och kollade in hur området ser ut idag, den 22 januari 2020. Här nedan är ett litet filmklipp med en helikoptervy över området som vi kommer ha under luppen de närmaste månaderna.
För att få en känsla för hur det är tänkt att se ut när Oceanhamnen är färdigbyggd så är en 3D-visualisering med realistisk rendering ett bra och kraftfullt verktyg. Här nedan får du en förhandstitt i 3D på den nya stadsdelen som håller på att växa fram med ett spektakulärt läge vid havet, ett stenkast från Helsingborgs centralstation. För att skapa en sådan film kan man t ex använda programvaran Blender 2.81 som vi börjat använda i kurserna Design, Konstruktion och Cad.
Digitalisering möjliggör nya innovativa arbetssätt Om man vill gå ett steg längre och erbjuda en interaktiv upplevelse så att besökaren själv kan navigera runt i 3D-miljön så kan man istället lägga in de 3D-objekt man skapat i t ex Fusion 360 eller Sketchup, i spelutvecklingsmiljön Unity, som vi använt i undervisningen i Programmering. I Unity kan man även skapa en interaktiv VR- eller AR-upplevelse. Med Unity Reflect kan man sedan koppla samman konstruktionsritningarna och projektplaneringsverktygen och följa hela byggprocessens alla olika steg i VR från en annan plats, eller med hjälp av AR-teknik se hur byggnaden steg för steg kommer att byggas upp precis där du står, trots att det ännu inte är klart. Det är som att i realtid kunna se in i framtiden, in genom väggar eller tillbaka till hur någonting såg ut innan.
Här kan du se var byggherrarna bygger
Det är totalt sex byggherrar som ska bygga bostäder i den nya stadsdelen. Vi vill gärna samarbeta med dem på olika sätt inom ramen för de kurser eleverna läser, men även för SYV (Studie- och Yrkes-Vägledning). Det kan t ex handla om studiebesök, intervjuer, designuppdrag eller praktikplatser. Kartan härunder visar var de ska bygga, och länkarna går till mer information om dem och deras projekt.
Oceanpiren är en del av Oceanhamnen, ett nytt spännande bostadsområde mitt i Helsingborg. På bästa läge, längst ut på piren, bygger vi 69 bostadsrätter om 1-4 RoK – Brf Oceanpiren. Här bor du på första parkett vid havet, i hjärtat av stadsdelen, i ljusa, välplanerade bostadsrätter som är byggda för en hållbar livsstil. Samtidigt om vi uppför Brf Oceanpiren bygger vi fyra radhus i townhouse-stil. Vi kallar dem Oceanvillorna. De har både hållbarhetstänket och den magnifika havsutsikten gemensamt med Brf Oceanpiren.
Design-, konstruktions- och CAD-uppgifter till TE18DP Här är en lista på exempel på arbeten och uppdrag som eleverna ska jobba med. Mer utförliga och detaljerande instruktioner ges under lektionerna, men de olika uppgifterna publiceras också på sidorna Designuppgifter för TE18DP och Konstruktions- och CAD-uppgifter för TE18DP.
Skapa en CAD-ritning på en av lägenheterna i Brf Oceanpiren. Utgå från planritningen.
Skapa ett komplett inredningsförslag till lägenheten.
Skapa konstruktionsritningar av väggsektioner, tak och golv i minst två olika material.
Skapa en materiallista och kostnadskalkyl för de ingående konstruktionselementen.
Gör hållfasthetsberäkningar och riskanalyser
Jämför materialalternativen med hänsyn till kostnad, hållfasthet, hållbarhet, miljöpåverkan, klimatavtryck och möjlighet till återvinning (livscykelanalys).
World Trade Center Helsingborg i Oceanhamnen ska bli mötesplatsen för entreprenörer, scale-ups, etablerade företag och affärs- och helgresenärer.
WTC Helsingborg blir en kontors- och hotellfastighet som kommer bli ett landmärke i Helsingborg. Med sina fjorton våningar precis vid hamninloppet ger den dig närkontakt med sundet, båtarna och kontinenten. Här kommer finnas gemensam service som reception och konferensavdelning. Gym, relax, dusch- och omklädningsrum. Restaurangen med uteservering vid vattnet och takterasser är ytterligare fördelar som berikar både arbets- och privatliv. I källaren planeras för cykelgarage med möjligheter till reparationer och en laddstation för elcyklar.
Fastighet är ritad av Juul Frost Arkitekter, men byggherren Midroc välkomnar kunderna tidigt in i processen för att kunna påverka lokalens utformning så att den passar verksamheten bäst. Att vara med och arbeta med förslag på lokalernas utformning kan vara ett bra elevprojekt! Juul Frost Arkitekter är förövrigt experter på design av campusområden och studentbostäder, och hur man kan integrera dem i städer.
Oceanhamnen får ett innovativt nytt avloppssystem– Reco Lab med Tre Rör Ut
Oceanhamnen kommer få en helt ny typ av klimatsmart avloppssystem med värmeåtervinning och lokalt producerad biogas. Varje fastighet ansluts till tre separata rör, ett för matavfall, ett för gråvatten och ett för svartvatten. Detta innovativa avloppssystem kräver att ingenjörerna tänker utanför boxen. I filmklippet ovan berättar VA-ingenjören Peter Winblad på Nordvästra Skånes vatten och avlopp, NSVA, om utmaningarna.
Reco Lab – en testbädd och showroom för framtidens källsorterande avloppssystem
Reco Lab kommer att bidra till att utveckla det världsunika systemet Tre Rör Ut för insamling och hantering av mat- och toalettavfall i fastigheterna på Oceanpiren i stadsdelen Oceanhamnen i centrala Helsingborg.
På uppdrag av NSVA har entreprenörföretaget NCC upphandlat det nederländska företaget Landustrie och det svenska företaget EkoBalans Fenix AB för att installera processteg i det unika Reco labs utvecklingsanläggning. Reco lab, som är en del av Öresundsverket i Helsingborg, ska behandla det källsorterade avloppet från Helsingborgs nya stadsdel, Oceanhamnen. Avloppshantering har en naturlig roll att spela i den cirkulära ekonomin då mycket av våra essentiella resurser, som vatten, näringsämnen och organiskt material passerar igenom stadens avlopp.
Det källsorterande avloppet innebär en reningsprocess med kraftigt ökad resursåtervinning. Miljövinsterna är flera:
ökad biogasproduktion
ökad näringsåtervinning
effektiv värmeåtervinning
mer energieffektiv läkemedelsrening
minskad klimatpåverkan
möjligheten för vattenåtervinning
Reco Lab planeras att vara färdigbyggt och driftsatt våren 2021 och inkluderar även ett showroom för utbildning samt en testbädd för teknikutveckling. Studiebesök hos NSVA för natureleverna (NA19) är planerat till maj 2020. Eleverna i NA18 borde också studera Reco Lab som en del av biologi- och kemikurserna, i synnerhet de som valt inriktningen mot natur och samhälle.
Bilder på bygget av Oceanhamnen
Bilder från fältstudie vid Oceanhamnen och Pixlapiren 2020-01-22 med drönaren DJI Spark:
Drönarvy | Helsingborg Oceanhamnen 2019-02-24 (Helsingborg då & nu)
Här är en kort introduktion till Chimera, en fördjupningsteknologi som gör det möjligt för lokala och avlägsna studenter att känna att de deltar lika och interagerar i en klassmiljö. Denna teknik kommer att vara lika användbar i alla presentatörs-/deltagarsituationer med tillägg av alternativa VR-miljöer.
Skicka frågor eller förfrågningar för mer information till JimmyG@PagoniVR.com
Alla delar av samhället påverkas av den energiomställning som behövs för att möta klimatutmaningen. På många områden behövs ny kunskap, kompetens och nya lösningar som dessutom måste slå igenom snabbare än i dag. Energimyndigheten meddelar att vi behöver satsa mer på forskning och innovation.
Omställningen till ett mer hållbart samhälle kan inte vänta. Vi behöver agera på bred front nu! Följande sju nyckellösningar är direkt avgörande för omställningen:
Digital transformation
Elektrifiering
Energilagring
Negativa utsläpp
Cirkulära flöden
Nyckellösningar som handlar om ekonomiska och sociala hållbarhetsfrågor
och hur människors agerande kan underlättas för att nå hållbara samhällen.
Detta framgår av Energimyndighetens underlag till energiforskningspropositionen som lämnades till regeringen i slutet av 2019.
Forskning och innovation är avgörande för energiomställningen
Regeringen har satt upp tydliga mål om att Sverige ska vara ett ledande forsknings- och innovationsland. Vi ska dessutom bli världens första fossilfria välfärdssamhälle. Det är ett djärvt mål, och Energimyndigheten konstaterar att vi måste satsa mycket mer på forskning och innovation för att lyckas med den energiomställning och samhällsomställning som krävs för att nå regeringens mål.
– Vi behöver insatser som möjliggör systemlösningar inom hela energiområdet och i samhället i stort, som ökar nyttiggörandet av innovativa hållbara lösningar och som gör det enklare att som enskild individ kunna göra hållbara val på alla plan. Energiomställningen rör inte bara teknik utan lika mycket ekonomiska och sociala aspekter. Här är Energimyndighetens arbete med forskning och innovation många gånger direkt avgörande, säger Energimyndighetens generaldirektör Robert Andrén i ett pressmeddelande.
Energimyndigheten föreslår därför en kraftfull satsning på forskning och innovation med en ökning av anslaget för energiforskning från 1,57 miljarder kronor per år 2020 till 2,17 miljarder kronor per år 2024.
Satsningar på forskning och innovation behövs inom framför allt sex samhällsområden, där omställningen måste gå snabbare. Det handlar om:
Förnybar el
Bioenergi
Industri
Transport
Bebyggelse
Energisystemet i samhället.
Olika stöd kombineras för att nya lösningar ska nå ut snabbt
Energimyndigheten har helhetsansvar för energiomställningen i Sverige och använder en bred palett av verktyg. Det innebär att stöd till forskning och innovation kombineras med insatser för affärsutveckling och internationell lansering.
För att innovationer snabbare ska komma ut i samhället vill Energimyndigheten;
öka stödet till pilot och systemdemonstration av lösningar
främja innovationsprocessen från forskning till marknad
hjälpa företag att nå investerare och en global marknad.
Sverige kan inspirera världen till hållbar utveckling genom att vara en föregångare i energiomställningen. De svenska innovationerna kan bidra till global nytta genom export av produkter, tjänster och lösningar.
Dirty Business: what really happens to your recycling (45:59) Dokumentärfilmen är uppdelad i 3 delar.
Vad vet du om plaståtervinningen i världen? Visste du att nästan ingenting av allt vi skickar till materialåtervinning i verkligheten återvinns? Både konsumenter och myndigheter har förts bakom ljuset med bedrägliga och illegala metoder i ett smutsigt system av gigantiska proportioner. Vissa länder har i decennier utnyttjats som dumpstationer för de rika ländernas sopor. Nu har dock många av skandalerna uppdagats och vi står inför en akut situation att hantera. Vad kan DU göra åt de växande sopbergen eller för att få fart på materialåtervinningen på riktigt?
Hur fungerar plaståtervinningen i Storbritannien? Tusentals ton plastskrot som samlats in för återvinning från brittiska hushåll har transporterats och dumpats på platser över hela världen.
Vi följer spåret efter Storbritanniens plastavfall genom hela landet och runt om i världen. Kan Storbritannien klara sig eftersom den största importören av världens återvinning, Kina, stänger dörren? I juli 2017 satte Kina stopp för import av plastskräp från världens länder, efter det att det visat sig att Kina använts för att dumpa icke återvinningsbara sopor från världens alla hörn.
Dokumentärfilmen ovan, producerad av Sky News 2018, tar upp problemen i Storbritannien. Det visar sig vid granskning att endast några få procent av all plast som samlas in för återvinning verkligen återvinns! Den officiella statistiken som påstår att över 40% av plasten återvinns har inte kontrollerats, utan är bara ett mått på hur mycket av den återvinningsbara plasten som sålts och skickats iväg från landet för återvinning (som dock inte sker). Många gånger har dock sopor blandats in vilket gör återvinningen praktiskt taget omöjlig. Men hur ser det ut i resten av världen?
Ett intressant återvinningsinitiativ i Tyskland Tyska hushåll sorterar sitt skräp i fyra separata sopkärl med olika färger. Gul för plast, brun för kompost, blå för papper och svart för icke-återvinningsbara sopor. I Tyskland landar två och en halv miljon ton plastförpackningar i de gula sopkärlen varje år. Men endast 5 % av den plast som samlas in i de gula behållarna återvinns till ny plast. Problemet är att plasten som kommer in till återvinningscentralerna är osorterad och består av en blandning av olika plastsorter som inte går att återvinna tillsammans. Det är svårt och resursintensivt (dyrt) att sortera och separera olika typer av plast, så det mesta eldas istället upp för energiåtervinning i värmekraftverk eller i stål- och cementfabriker.
Recycling plastics – Resource efficiency with an optimized sorting method (15:51)
MEILO, ett företag i Gernsheim beläget i södra Hesse, sorterar plastavfall från de gula sopkärlen i 30 repetitiva sorteringsprocesser tills den maximala renheten av variation har uppnåtts. Plast separeras först efter storlek och utsätts sedan för en luftseparator. I följande steg skannar en nära infraröd skanner plasten på transportbandet när de passerar och kommunicerar till en tryckluftsstråle vid slutet av transportbandet vilken plast som kan återvinnas. Slutligen blåser tryckluftsstrålen detta material åt sidan. Således sorteras varierande plast med en upp till 98% renhet av variation. Förutom de tre viktigaste värdefulla plasten, HPDE, PP och PET, hämtas fyra andra välåtervinningsbara plastvaror från skräpfloden.
Plasten sorteras först efter storlek i roterande trummor med hål. Det gör efterföljande sortering enklare.I en kraftig vindtunnel blåses lätt plastfilm bort så att den hårda tyngre plasten blir kvar.En infraröd scanner identifierar olika typer av plast.I nästa steg blåser tryckluftsmunstycken bort de platsbitar som ska sorteras ut.Det redan automatiskt sorterade materialet sorteras sedan ytterligare för hand av människor.Ungefär en tredjedel av all sorterat plast består av blandade plastsorter och annat skräp som inte går att använda för återvinning.
Totalt går den återvinningsbara plasten igenom sorteringsprocessen ett 30-tal gånger för att till slut nå en sorteringsgrad på upp till 98 %. Förutom de tre viktigaste värdefulla plasterna, HPDE, PP och PET, sorteras fyra andra återvinningsbara plastvaror ut bland det som ursprungligen kastats som skräp.
Återvunna HDPE-flaskor används för att tillverka plaströr eller plastpallar.Återvunna plastlock av PP används till att tillverka blomvaser eller hinkar.Återvunna PET-flaskor används för att tillverka tröjor eller trädgårdsmöbler.
Problemet med att tillverka nya andra produkter av återvunnet plast är att dessa produkter ofta har en begränsad livslängd och sedan kanske inte återvinns. För ett helt cirkulärt system behöver gamla plastflaskor bli nya plastflaskor. För att detta ska kunna ske behöver den återvunna plasten processas ytterligare och göras ännu renare.
På Systec Plastics GmbH i Eisfeld, Thuringia, bearbetas plaster vidare, som sorterats av MEILO GmbH, för att producera en premiumråvara för plastindustrin. Här strimlas, rengörs och sorteras plastflingorna efter färg innan de smälts ner till granulat. De 99 % rena granulaten fylls sedan i behållare och transporteras till plasttillverkare för att bli nya produkter.
Plasten finfördelas i en kvarn och plastbitarna tvättas rena från yoghurt, tvättmedel och andra substanser. När de rena plastbitarna tvättats, finfördelats och sorterats ut består de av nästan 100 % ren HDPE-plast i olika färger.I en speciell färgsorteringsmaskin separeras de olika plastbitarna beroende på vilken färg de har.Olika färgade plastbitar sorteras ut med hjälp av 60 st datorstyrda tryckluftsmunstycken som blåser dem åt olika håll.Resultatet från processen är färgsorterade HDPE-flingor med en reningsgrad på över 99 %.Materialet smälts sedan ned i en extruder vid en temperatur på 220 grader Celsius.Sedan kyls den smälta plasten ner och görs till granulat som sedan kan användas för att tillverka nya plastprodukter av HDPE.
Werner & Mertz GmbH, som tillverkar tvättmedel och rengöringsmedel, använder Systec Plastics GmbH-granulat för att producera sina förpackningsflaskor. Granulatet bearbetas enkelt i Werner & Mertz GmbHs standardproduktionsanläggningar i Mainz. Deras HDPE-flaskor och PP-lock är av 100% återvunnen plast från de gula sopkärlen. Deras PET-flaskor består av 20% återvunnen PET från gula sopkärl och 80% återvunnen plast från insamlade returflaskor.
20 % återvunnet PET-plast från slängda PET-flaskor från de gula soppåsarna blandas med 80 % återvunnet PET-plast från flaskinsamling.Statistik på tillverkning och plaståtervinning från Werner & Mertz Gmbh
Hur ser det ut med plaståtervinningen i Sverige?
Naturvårdsverket har gjort en kartläggning av plastflöden i Sverige. Kartläggningen visar att mer material behöver materialåtervinnas. När plasten istället går till energiåtervinning bidrar den till utsläpp av växthusgaser vilket går emot Sveriges klimatmål. Det finns dock flera tecken på en positiv utveckling, men vi har samtidigt en hel del utmaningar.
Många av de hinder för materialåtervinning som finns är gemensamma för flera typer av plastmaterial. Några av de generella hinder som utredningen Det går om vi vill – förslag till en hållbar plastanvändning (SOU 2018:84) listar som begränsar materialåtervinning av plast är:
Svart plast är svår att sortera med IR-teknik.
Färgad plast missfärgar övrig ofärgad plast.
Laminat består ofta av flera olika typer av plast som sammanfogats i lager vilket försvårar återvinning.
Nedbrytbar plast passar inte i dagens återvinningssystem.
Till dessa kan kartläggningen addera följande begränsningar:
Begränsad sorterings- och upparbetningskapacitet (tvätt och kvarning) i Sverige.
Begränsad efterfrågan på återvunnet material, särskilt efter Kinas importrestriktioner.
Lågt marknadsvärde och varierande kvalitet på materialet.
Bristande information längs värdekedjorna och över tid avseende innehåll av tillsatsämnen.
Relativt lågt pris på jungfrulig plastråvara.
Innehåll av ämnen som är problematiska att cirkulera
Plast har blivit ett allt vanligare material sedan det dök upp på marknaden för drygt 60 år sedan. Plaster kan delas in i ca 45 olika plastfamiljer och inom varje familj finns det hundratals varianter där små molekylära ändringar ger de olika plasterna varierande materialegenskaper. Det finns flera typer av plast som är vanliga i vardagsprodukter vi har omkring oss. Här berättar vi om de vanligaste platstyperna och hur de brukar användas.
PVC polymer molecules in a chain. theasis / Getty Images
Härdplast och termoplast
Det två huvudgrupperna bland de många olika plastmaterialen är härdplast och termoplast. Härdplastär plast som inte kan smältas ned eller formas om efter att den har tillverkats. Ofta använder man härdplast tillsammans med glas- eller kolfiber för större konstruktioner, såsom båtar eller segelflygplan.
Termoplast kan, till skillnad från härdplast, både smältas ned och formas om efter tillverkning. Termoplast är vanligare och några exempel på produkter av termoplast är plastpåsar, plastflaskor, glasögonbågar och mobilskal.
Polyeten (PE)
Polyeten är den vanligaste termoplasten och används framför allt i produkter som köksredskap, leksaker, rör, kablar, plastpåsar, plastfolie och flaskor. Polyeten används ofta för att det är billigt att tillverka. Polyeten är elastiskt och absorberar inte vatten samt har goda mekaniska egenskaper samt tål kontakt med många olika ämnen.
Polyeten kan ibland innehålla färgämnen och i vissa fall flamskyddsmedel vid användningar med risk för brand i till exempel kabelisolering.
Polypropen (PP)
Polypropen är en termoplast som används i produkter som matbehållare, förpackningar, leksaker, möbler och textilier. Kännetecknande för polypropen är att det är slitstarkt, genomskinligt samt tål kemiska påfrestningar, till exempel att sura livsmedel ligger länge i en förpackning.
Polypropen kan ibland innehålla färgämnen, antioxidanter och i vissa fall flamskyddsmedel vid användningar med risk för brand.
Polystyren är en vanlig och billig termoplast som förekommer i många olika typer av plastprodukter. Vanliga exempel är livsmedelsförpackningar, plastbestick, lådor för CD-skivor och värmeisoleringsmaterial. Polystyren har bra elektriska egenskaper samt är hårt och styvt.
Expanderad polystyren (XPS) används till exempel till värmeisolering.
Materialet polystyren kan innehålla mjukgörare som ftalater och organiska fosfater eller fosfatestrar. Även antioxidationsmedel, stabilisatorer och bromerade flamskyddsmedel.
Akrylnitril-Butadien-Styren (ABS)
Akrylnitril-Butadien-Styren (ABS) är en termoplast som används främst i elektroniska och tekniska produkter. Exempel är dataskärmar, tangentbord och skrivare. Typiskt för ABS är den är enkel att producera, forma samt går att variera så att den får flera olika egenskaper, till exempel att den ska vara slagtålig.
Materialet ABS kan innehålla mjukgörare som till exempel ftalater. Det kan också innehålla bromerade flamskyddsmedel, färgämnen och antioxidanter.
Polyetentereftalat (PET)
Polyetentereftalat (PET) är en av de absolut mest använda plasterna och förekommer i produkter som burkar och plastflaskor. Kännetecknande för PET är att det nästan inte väger någonting och att det är slagtåligt. PET används också i textilier och förpackningar.
Material av PET kan innehålla färgämnen.
Polymetylmetakrylat (PMMA)
Polymetylmetakrylat (PMMA), även kallat plexiglas, används ofta i till exempel baklyktor på bilar, kontaktlinser samt material som måste tåla hög påfrestning såsom akvarierutor och hockeyrinkar. PMMA är slagtåligt, splittersäkert, vädertåligt och är väldigt likt glas.
Material av PMMA kan innehålla färgämnen.
Polyamid (PA)
Polyamid (PA) förekommer mycket inom textilbranschen och är mest känt som det huvudsakliga materialet i nylonstrumpbyxor. Det används dock också i produkter som skruvar och kugghjul, köksmaskiner, fisknät och fiskelinor, bränsletankar och i elektronisk utrustning. Polyamid är färglöst men är enkelt att färga, väger inte så mycket och är tåligt.
Material av polyamid kan innehålla färgämnen.
Polyvinylklorid (PVC)
Polyvinylklorid (PVC) är den tredje mest använda plasten i världen efter polypropen och polyeten. PVC är i grunden en så kallad styv plast, alltså att den är hård.
Styv PVC används mycket i vatten- och avloppsrör och hårda platsleksaker. Mjukgjord PVC, alltså när man tillsatt mjukgörare i plasten, används till exempel i slangar, golv, höljen till elektriska kablar, tryck på kläder, i regnkläder, skor, väskor och bälten samt i mjuka plastleksaker och i sjukvårdsmaterial som stomi- och blodpåsar. PVC är också den plast som användes i samt gav namnet till vinylskivor.
Merparten av de mjukgörare som används i plastmaterial går till tillverkningen av mjuk PVC.
Material av PVC kan innehålla färgämnen, mjukgörare, stabilisatorer och ibland flamskyddsmedel.
Polykarbonat (PC)
Polykarbonat används i produkter som till exempel CD-skivor, glasögon och trafiklampor. Polykarbonat används också till skottsäkra fönster samt till visir, maskinskydd och flygplansfönster. Typiskt för polykarbonat är att det är genomskinligt, är slag- och värmetåligt samt är elektriskt isolerande.
Polykarbonat kan innehålla tillsatser som mjukgörare, bromerade flamskyddsmedel, färgämnen och antioxidanter.
Gummimaterial
Plastmaterial inkluderar även gummimaterial. Gummi består liksom plast av en eller flera polymerer och en rad olika tillsatsämnen och kännetecknas av sina elastiska egenskaper. Polymeren kan antingen vara naturlig eller syntetisk. Beroende på val av polymer och tillsatsämnen får gummimaterialen olika egenskaper, från mjuka till hårda och styva material. Exempel på tillsatsämnen i gummimaterial är, antioxidanter, UV-strålningsskydd, fyllmedel, mjukgörare och stabilisatorer. Den största enskilda produkten där gummi används är gummidäck.
Icke-förstärkt epoxi kan användas i fogmassa och ytbeläggningar, speciellt på stål och betong. Fiberförstärkt epoxi används för delar i bilar, båtar och flygplan, bränsletankar, golv och komponenter i elektronik.
Epoxi är en värmehärdande plast som har hög resistens mot lösningsmedel och basiska ämnen samt har bra motstånd mot slitage. Epoxi har också goda elektriska och mekaniska egenskaper.
Material av epoxi kan innehålla färgämnen och flamskyddsmedel. Bisfenol A används vid tillverkningen av epoxi och därför kan material av epoxi innehålla bisfenol A som en rest.
Polyuretan (PUR)
I de flesta fall används polyuretan (PUR) som skum i isolering för fjärrvärmerör, kylskåp och frysar samt till möbler, madrasser, golv och skor. Styvt skum av PUR används bland annat till fordonsdelar för till exempel stötfångare.
PTFE har fysikaliska egenskaper som gör den mycket hal (låg friktion). Materialet är känt från varumärken som till exempel Teflon och Gore-Tex.
PTFE är kemikaliebeständigt och kan användas inom ett brett temperaturområde. Det har bra elektriska egenskaper och har en vaxliknande yta som praktiskt taget inget häftar på. Det absorberar inte vatten och bryts inte ner av UV-ljus, ozon eller syre till skillnad från andra termoplaster.
PTFE används i till exempel i stekpannor för att hindra maten från att bränna fast. PTFE används även som slitlager i olika former av glidlager och liknande där man vill ha en låg friktion. Medicinskt används PTFE till exempel i implantat. De goda kemiska egenskaperna gör att ett implantat har lång livstid. Inom optiken kan PTFE-plast användas i vissa typer av linser, eftersom det är transparent för infrarött ljus.
Återvinningssymboler, till exempel en triangel med siffra inuti, anger huvudplasten i produkten. Denna typ av symboler har sitt ursprung i EUs förpackningsdirektiv och om förpackningsavfall och är frivillig och är inte en del av livsmedelslagstiftningen eller har med Livsmedelsverkets ansvar att göra. Dessa symboler har heller inget med säkerhet hos materialet att göra.